

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010

 run

Workspaces

ODABA
NG

 Page 2 of 12

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 Page 3 of 12

Content

1 Introduction ... 4
ODABA2 ... 4
Platforms .. 4
Interfaces .. 4
User Interfaces ... 4

2 Workspaces ... 5
Workspace Support .. 5

 Page 4 of 12

1 Introduction

ODABA2 ODABA2 is an object-oriented database system that al-
lows storing objects and methods as well as causalities.
As an object-oriented database, ODABA2 supports
complex objects (user-defined data types), which are
built on application relevant concepts.

ODABA2-applications are characterised by a high flexi-
bility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represented
considerably better than in relational systems.

ODABA2-applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABA2-applications a favourite possibility
to solve highly complex jobs as come up in administra-
tive and knowledge areas.

Platforms ODABA2 supports windows platforms (Win-
dows95/98/Me, Windows NT and Windows 2000) as well
as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

Interfaces ODABA2 supports several technical interfaces:

 C++, COM as application program interface (this
allows e.g. using ODABA2 in VB scripts and ap-
plications)

 ODBC (for data exchange with relational data-
bases)

 XML (as document interface as well as for data
exchange)

User Interfaces ODABA2 provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABA2 provides a special ODABA2 GUI builder.

 Page 5 of 12

2 Workspaces

Workspace Sup-
port

Workspaces can be used to store updates for metadata
objects temporary until updating the metadata object has
been finished. The administrator must enable the work-
space feature explicitly for each database that should be
used with workspaces.

Group work-
space

You can share a workspace with a group of users. In this
case the ini-file for the application must refer to the
workspace that is the root for all workspace users in the
group. Thus, you may have production (Prod) or devel-
opment (DEV) workspaces, and below workspaces for
sections or smaller user groups (UG1, …, UGN). Finally
each user can create individual (user bound) workspac-
es below his root workspace.

The root for user group1 (UG1) could be defined as

WORKSPACE=DEV.UG1

In the ini-file (the system workspace WS0 must not be
referenced in the workspace path).

Create When workspaces are enabled you can create one or
more individual workspace in the file menu of the appli-
cation (File/New workspace). When a workspace is
created it is opened automatically and all changes are
stored in the opened workspace. All updates are visible
only in the current workspace until they are discarded.
Updated objects stored in a workspace can only be up-
dated by the workspace owner and are locked for other
users.

Workspaces allocated via the file menu are user bound,
i.e. only the user that has allocated the workspace can
open these workspaces.

You may also build hierarchies of individual workspaces
by creating a new workspace while working in an open
workspace.

Open When working with different workspaces you can switch
between workspaces by using the Open workspace ac-
tion in the file menu of the main window.

Close Closing a workspace will leave the current workspace
and goes to the next higher level. The changes made in
the current workspace are kept in the workspace and still

WS0

DEV Prod

UG1 UGN

U1 U1 U1 U1 U1 U1 Un

 Page 6 of 12

not visible outside the workspace. You can close only
those workspaces that have been opened in your appli-
cation, i.e. you cannot close the root workspace defined
in the ini-file. Closing the workspace is possible by se-
lecting Close workspace from the file menu in the main
window.

Consolidate Consolidating a workspace will save all changes stored
in the workspace on the next higher level or in the data-
base when (consolidating a top workspace (workspace
below WS0). The workspace is cleared up and can be
used for further work. Consolidating a workspace will not
delete it physically, but only remove all data from the
workspace to the next higher level.

Discard Discarding a workspace will remove all changes stored
in the workspace without saving those on the higher lev-
el. Usually one should avoid discarding a workspace
when global objects have been updated. Since database
consistency checks are made against the updated ver-
sions of the metadata objects discarding a workspace
may lead to rule consistency problems in the database,
i.e. some special rules established in the Bridge

NA
 sys-

tem might be violated. This is usually not the case when
updating local or semi global metadata objects.

Discarding a workspace will not delete it physically, but
only remove all data from the workspace.

Delete Deleting a workspace is only possible when the work-
space does not contain any data. This means that the
workspace must be discarded or consolidated before de-
leting it. Delete will remove the workspace physically.

Administrating
group work-
spaces

Group workspaces can be administrated with the Work-
space utility that allows discarding, consolidating and
deleting workspaces from a command line. You can use
the Workspace utility also for administrating the individu-
al workspaces. For more information see the ODABA
“Database Utilities” documentation.

 Page 7 of 12

Workspace A workspace is a long-time transaction that may exist
even after process termination. Workspaces are used for
storing temporary updates. As long as working in a
workspace changes are not written to the database but
to a special workspace area.

A workspace is like a transparent slide on top of the da-
tabase. After finishing a series of updates that may take
several days or weeks you may consolidate the chang-
es, i.e. storing all updates to the database or discard
them.

Workspaces are identified by names and allocated by
the database system. Usually workspaces reside in the
same location as the root of the database.

In contrast to process transactions several users may
work in the same workspace but only one can consoli-
date the changes. After consolidating or discarding
changes the workspace is cleared up, i.e. it will be emp-
ty.

Shadow data-
base

One problem with long transactions is keeping the data-
base consistent without blocking the whole system by
locked instances and collections.

Example: One transaction adds
an instance with a unique name
“Paul” in a workspace. This is not
visible from other workspaces but,
nevertheless, no other user is al-
lowed to add “Paul” again.

Hence the system must know in a way the state of the
database, as it would look like when all workspaces
have been consolidated. This is also important when
checking update, insert or deletion rules, which may in-
volve other instances.

For this purpose ODABA provides a shadow database
when working with workspaces. The shadow database
reflects the database state at any time as if all changes
have been made directly in the database.

Thus, it becomes possible to refer to the states in the
shadow database as well as to the states in the “real”
database without updates saved in workspaces.

 Page 8 of 12

Nested work-
spaces

Within a workspace you may create another workspace
below the current one. When consolidating the lower
workspace the changes are stored in the upper work-
space but not in the database. When consolidating the
upper workspace while lower workspaces are opened
only the consolidated changes from lower workspaces
are stored into the database. In this case the upper
workspace is not completely cleared up since all in-
stances that are in use in lower workspaces are still
locked in the database.

Ownership A user can own workspaces. In this case only the user
who has allocated the workspace is able to open it
again. It is, however, also possible to create public work-
spaces that can be accessed by any user.

Usually private workspaces are created by a user from
within an application. The application itself takes care
about user control. Public workspaces are created by
administrators by establishing a workspace for a certain
user group (as system or developer).

Whether a workspace is private or public depends
whether it is created with user identification or not.

Enabling work-
space

Before using workspaces this feature must be explicitly
enabled. Enabling the workspace feature will create the
shadow database and installs a workspace 0 which is
the base for all other workspaces. Workspace 0 is a sys-
tem workspace and cannot be discarded or consolidated
or deleted. It is allocates at the same location as the da-
tabase with the extension .ws0.

DatabaseHandle dbhandle(dictptr,“C:/ODABA/test.db”,NO”);

 //exclusive database

dbhandle.EnableWorkspace(“C:/ODABA/test.shadow”);

Open workspace You can create or open an existing workspace with a da-
tabase handle.

dbhandle.OpenWorkspace(“Wspace1”); //publ. workspace

dbhandle.OpenWorkspace(“Wspace1”,”user27”);//priv. workspace

 Page 9 of 12

 After opening the workspace all updates are stored in
the opened workspace. When the workspace is used the
first time it is created automatically. When it does al-
ready exist the existing workspace is opened.

Private workspaces can be opened only when passing
the same user name that has been passed when open-
ing the workspace the first time. Opening a public work-
space any username or none can be passed.

You can check whether a workspace exists using the
LocateWorkspace() function, which returns true when
the workspace has already been created.

dbhandle.LocateWorkspace(“Wspace1”);

 After opening you are in the context of the workspace.
When opening another workspace now this is created on
top of the current workspace. I.e. in the context of the
current workspace:

dbhandle.OpenWorkspace(“Wspace1”);

dbhandle.OpenWorkspace(“Subspace11”);

 This will create Subspace11 in Wspace1. The same you
achieve with calling

dbhandle.OpenWorkspace(“Wspace1.Subspace11”);

Finish workspace You can finish a workspace by consolidating or discard-
ing changes.

Consolidate ConsolidateWorkspace() will consolidate all changes
made in the workspace. You can consolidate the cur-
rently opened workspace, only, i.e. you must open the
workspace before consolidating.

For consolidating a workspace is must be opened with
exclusive use. Only when no other user has access to
the workspace it is possible to consolidate it.

dbhandle.OpenWorkspace(“Wspace1”,NULL,YES);

dbhandle.ConsolidateWorkspace();

Discard If you want to through away all changes made in the
workspace you can use DiscardWorkspace() for the cur-
rently opened workspace.

dbhandle.DiscardWorkspace();

 Page 10 of 12

Finish nested
workspace

There is a difference finishing a top workspace that has
no other workspaces above or when finishing a work-
space with higher workspaces.

You may consolidate or discard a top workspace but you
cannot discard a workspace that has one or more lower
workspaces on top. When consolidating a non-base
workspace, i.e. a workspace that is on top of another
one, changes are stored in the lower workspace. Thus,
an upper workspace contains all consolidations from its
lower workspaces or changes made directly in the work-
space.

When consolidating a workspace that has lower work-
spaces Only changes made directly in the workspace or
consolidated changes from lower workspaces are
stored.

Close workspace Workspaces are closed when closing the database. It is
possible, however, to close the active workspace explic-
itly.

dbhandle.CloseWorkspace();

 When working in a hierarchy of workspaces you can
close all workspaces in the hierarchy. In this case further
updates are stored directly in the database.

dbhandle.CloseWorkspace(YES);

Listing workspaces You can list available workspaces for a special user, all
workspaces or public workspaces. Workspaces are re-
trieved hierarchically based on a work space or the da-
tabase itself.

Get Workspace GetWorkspace() returns the name of a workspace by in-
dex relative to a given root.

// first top workspace

dbhandle.GetWorkspace(“”,0);

// first workspace below Wspace1 for user „user27‟

dbhandle.GetWorkspace(“Wspace1”,0,”user27”);

 When passing a user name to the function it returns only
workspaces for the selected user. Usually the function
returns the workspace name, which is the name of the
workspace path without the root path, in the result buffer,
i.e. the value is removed when another database handle
function is called. You may, however, pass an area for
storing the workspace name.

 Page 11 of 12

char name[40];

dbhandle.GetWorkspace(“Wspace1”,0,”user27”,name);

 The workspace list is buffered internally. It is created
when calling GetWorkspace() or LocateWorkspace() the
first time. To ensure that the list is up-to-date you may
pass the refresh-option (YES or true) for updating the
list.

Delete workspace After creating a workspace it will remain until it is explicit-
ly deleted. Even Discard or Consolidate will not remove
the workspace but leave an empty one. For removing a
workspace you can use DeleteWorkspace().

A workspace can be deleted only when there are no
lower workspaces defined and when it is completely
empty.

dbhandle.DeleteWorkspace(“Wspace1”,”user27”);

 When the workspace had been allocated with user name
the user name has to be passed also for deleting the
workspace.

Performing con-
sistency checks

Working with workspaces creates some problems for
performing logical consistency checks (handling Store,
Insert or Delete-Events). The application has to decide
whether checks are performed against the original data-
base (which does not reflect changes made in the work-
space) or against the shadow database, which reflects
all updates stored in workspaces. Assuming that most of
the workspaces are consolidated later consistency
checks against the shadow database are better than
those against the original database. In any case there is
a risk that discarding a workspace may create incon-
sistency.

For performing checks against the shadow database you
can activate the shadow database.

Activate Shadow
Base

Activating the shadow database will direct all read op-
erations to the shadow database instead of the original
database.

dbhandle.ActivateShadowBase();

 Page 12 of 12

Save consistency
checks

To perform save consistency checks you must lock all
instances involved in the checking. This can be done al-
so when the shadow database is active as shown in the
following example for the DBStored handler in a Person
context class

Logical sPerson::DBStore()

{

 logical term = NO;

 PropertyHandle *pers_pi = GetPropertyHandle();

 PropertyHandle *boss_pi = pers_pi->GetPropertyHandle();

 Pers_pi->GetDataBaseHandle()->ActivateShadowBase();

 boss_pi = pers_pi->GetPropertyHandle(“boss”);

 if (boss_pi->Get(FIRST_INSTANCE))

 If (boss_pi->GetPropertyHandle(“income”) <

 boss_pi->GetPropertyHandle(“income”) }

 term = YES; // update not possible

 else

 if (boss_pi.Modify()) // cannot lock instance

 term = YES; ; // update not possible

 else

 poss_pi.Save(); // Lock instance in workspace

 Pers_pi->GetDataBaseHandle()->DeactivateShadowBase();

 Return(term);

}

 Modifying and saving the instance will lock the instance
for all other workspaces except subordinated ones. Thus
no other user can modify the instance that has been in-
volved in the consistence check until the workspace is
consolidated. When Modify() fails the instance is locked
by another user and the transaction is not save since the
other user may discard the workspace or roll back a
transaction.

Deactivate Shad-
ow Base

At the end of the process you must deactivate the shad-
ow database to ensure that processing continues with
the original database.

dbhandle.DeactivateShadowBase();

