

December 2002

January 2007 (revised)

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010

 run

Active Data Link 2.0

Reinhard Karge

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 Page 3 of 24

Content

1 Introduction ..4
Active Data Link ..4
(ADL) ...4
Scope ..4
Events ...5
Action control...6
Summery ...7

2 ADL Overview ...8
Database Management System (DBMS) ..8
GUI Interface ...9
Active Data Link ..9

3 Data Access Handle .. 11
Cursor ... 11
Access Hierarchies .. 11
Subsets .. 11
Data source .. 12
Data states ... 13
Translating data states ... 14
Data Events .. 14
Event caching ... 16
Further requirements .. 17
Databases .. 18
Summary .. 19

4 Data Control Handle .. 20
Control Handle Types .. 20
Links to Data Access Handle ... 21
Control states ... 21
Control events .. 23
Summary .. 24

5 Application Events Error! Bookmark not defined.

6 Practical experience.................................. Error! Bookmark not defined.
The paper ... Error! Bookmark not defined.
Development Error! Bookmark not defined.
Current state....................................... Error! Bookmark not defined.

1 Introduction

 Active Data Link is a technology, which has been devel-
oped by run-Software from 2003-2004. The idea is basi-
cally to reduce the costs for application development by
80 or 90%.

Considering, that application development mainly deals
with accessing and moving data from and into forms to
display or receive the current data, this process can be
automated nearly by 100%.

Relational development environments have done the
first step in this direction by displaying tables or views
associated with a GUI element (usually a table grid). Ap-
plication logic is, however, a bit more complex. In many
cases, applications follow a hierarchical procedure when
accessing data or are at least mainly controlled by data
selection. In many cases, actions provided within an ap-
plication do not depend on the application but are de-
fined as business rules, which is not part of the applica-
tion logic.

Active Data Link
(ADL)

ADL describes a technology, which links the application
tightly to the data access. Thus, the application is driven
by data access, but data access is driven also by the
application reacting on application events.

Scope The intension of ADL is to support large and complex
applications. ADL is described here for running on appli-
cation clients. In principle it is also possible to run ADL
on an application server, supposed that the application
server generates the GUI events required by ADL.

DBMS ADL is not based on a particular database management
system (DBMS). Practically one may implement ADL for
any type of DBMS. It requires, however, more resources
implementing ADL on a relational DBMS than on an ob-
ject-oriented DBMS.

Data access mechanisms differ, however, from relational
DBMS or .NET access mechanisms, which both are ta-
ble oriented, while ADL requires instance and path ori-
ented access.

 Page 5 of 24

GUI Most GUI systems (as Visual Basic– Microsoft, Delphi –
Borland, or QT – Trolltech) can refer to as base for an
ADL system. The only requirement for the GUI system
is, that it passes a minimum of GUI events to the appli-
cation and allows creating GUI elements on the fly.

Events ADL is based on event generated on the database side
as well as on the GUI side.

Data Events

There are a few typical events, which cause the applica-
tion to react as selecting a line in a list or passing the fo-
cus to a certain GUI-Element. This action causes a data
read action, which generates a number of read events
that automatically lead to update the data displayed on
the user interface. This is just a rough explanation of the
mechanism behind ADL.

But “record access” does not generate sufficient events
for driving an application. Selecting a person, the appli-
cation might need to display the person’s children in a
subsequent list control. The set of displayed children
probably changes always when selecting a new person.
Hence, ADL requires something like a collection
changed event. But also collection update events, which
indicate that a collection may have changed, must be
supported to update e.g. the list of children displayed for
a person.

Later on in this paper I will summarize the most im-
portant events, which should be supported by an ADL
system.

GUI Events Considering a simple application, which displays a list of
persons in a list and the details for the selected person
in a form right of the list (which is typical for many appli-
cations).

When selecting a person with a mouse, the user expects
the person data being displayed in the right form. With
ADL, the application would react as follows:

 The click event on the list (current list item
changed) causes ADL to read the data record
for the selected instance from the associated
collection.

 The read event for the data record also gener-
ates read events for each property, which cause
filling in data into GUI controls linked with the
data items (properties).

This mechanism sounds very simple, but it will reduce
the development costs extremely.

Action control Most applications need to activate several actions, which
often are considered as application rules. In many cas-
es, it turns out, however, that actions are rather based
on business rules than on application rules. Any time,
the question whether an action makes sense outside the
application context or not, is answered with yes, the ac-
tion is probably a business rule and had been imple-
mented as application rule just for practical reasons.

Action elements Typically, actions are associated with action elements
that can be activated by the user (buttons or menu
items) or with GUI events. This is the same in an ADL
environment, i.e. ADL does not add anything new to this
aspect, except that actions may cause data events,
which might influence the application again.

On the other side application actions can be used for
generating data events in order to control the applica-
tion. E.g. selecting a data record in a collection may
cause selecting an instance in the user interface and
mark is as selected or current instance. Driving an appli-
cation by accessing data provides a number of valuable
features, which might be used designing an application.

 Page 7 of 24

Business rules As well as application rules, business rules may influ-
ence the application behaviour in an ADL environment.
This is, sometimes a positive effect, but sometimes, it
might be disturbing. Hence ADL must provide a feature
for suppressing data events.

Summery ADL is just an extension for event driven applications. In
contrast to traditional event driven GUI applications ADL
adds data events to application control. This paper de-
scribes the pre-conditions ant rules for setting up an ADL
environment.

In principle, any one may design its own ADL environ-
ment, but it takes some time to get it running properly.
ADL mainly requires a data access interface, which is
able to fire different classes of application events and a
proper GUI interface, which fires GUI events.

2 ADL Overview

 The main task of ADL is translating data events into GUI
actions and GUI events into data access actions.

 In principle, ADL can be provided for any kind of data
base, but it requires more resources implementing ADL
for a relational DBMS than for XML or an object-oriented
DBMS.

Database Man-
agement System
(DBMS)

The reason is simply, that relational DBMS are table ori-
ented while XML and object-oriented databases support
instance (element) access and paths. Object oriented
databases provide also some additional prerequisites,
which are very helpful when designing an ADL environ-
ment.

Data Access
Handle

A simple way to support ADL’s data side is providing a
class, which is called here Data Access Handle. A data
access handle. A data access handle provides the func-
tionality for handling data in a simple (atomic) data field
like number or text but also for handling complex data as
collections or hierarchical structures.

 To provide a common data interface, data access handle
must also support transient and persistent data access.

Data Events The data access handle generates relevant data events,
which are not part of the data model or functional appli-
cation model. Data events are generic events which in-
dicate that data has been read or updates. Such events
cannot be triggered by database triggers, since the da-
tabase model should not depend on the application
model.

GUI

System
Data

Access

ADL

 Page 9 of 24

Unique identifier ADL becomes very difficult, when database instances
(records) do not have a unique identifier. This makes it
nearly impossible to synchronize the application state
with the data access manager state. When the database
system does not support unique identifiers, the data ac-
cess handler of ADL should do this.

Collections XML and object-oriented databases usually support local
collections for associations and relationships. Since ap-
plications usually work hierarchically, local collections
and their state are an important information or ADL.
Hence, the data access handle must provide information
about any related collection, as collection identifier,
which uniquely identifies a collection or cardinality.

Modification Data access handler must inform the application about
any sort of modification on a field, instance or collection.
Since modifications might be caused by other applica-
tions, which not necessarily generate modification
events, the data access handler must be able to detect
data modifications whenever required.

GUI Interface The GUI-side of ADL is represented by class that is
called here Data Control Handle. As well as the data ac-
cess handle, the data control handle refers to any kind of
GUI element, which can be linked to data.

 In this sense, a data control handle may support an ele-
mentary data field (number or text) but also a form dis-
playing parts of an instance or a table or tree structure.

Data control
handle

Data control handle provide functionality for controlling
the GUI element behaviour (setting size and colour, fill-
ing in data etc). The data control passes the ADL re-
quests to the underlying GUI elements, which might VB,
Delphi or QT elements.

GUI events Practically, one may connect data control handle to any
GUI system, which generates the GUI events required
by ADL for controlling the application. The number of
events requested by ADL is, however, limited and sup-
ported by most of GUI systems.

Active Data Link Active data link provides the connection between Data
Control Handle and Data Access Handle. This includes a
mechanism for translating GUI events into data actions
and reverse (data events into GUI actions).

 ADL itself passes GUI events to the application that may
also react on specific events. On the other hand, the ap-
plication may submit GUI or data requests via ADL.

ADL

GUI
events

GUI
actions

Data
actions

Data
events

Applica-
tion

events

 Page 11 of 24

3 Data Access Handle

 The data access handle supports data actions (e.g. lo-
cating a data instance) and generates required database
events. ADL allows linking a data access handle to any
number of data control handles (GUI side). When gener-
ating data access events, resulting requirements are
sent to all data control handles linked to the data access
handle.

 A data access handle may refer to an elementary data
field, a data instance (or record) or to a data collection.
Since a data instance may refer to a number of collec-
tions, again, a data access handle may also refer to a
number of collections or a number of collections of col-
lections etc. Thus, the complexity of data handles by a
data access handle is practically unlimited.

Cursor Data access handles provide cursor functionality, which
allow selecting one instance in a collection as “current”
or “selected” instance.

Database handles for elementary data usually contain
exactly one instance, which by default is considered as
selected.

Access Hierar-
chies

Data access handle may form hierarchies, i.e. for each
property of an instance for the data access handle a
subordinated data access handle can be created.

 DAH person(database,”Person”);

DAH p_name(person,”first_name”);

DAH children(person,”children”);

DAH c_name(children,”first_name”);

DAH grand_children(children,” children”);

Subsets In many cases applications display subsets of a relation-
al table, i.e. children as a subset of persons. In object-
oriented environment children becomes a property of
person, which contains the persons that are children of
the selected person.

A subset defined in a subordinated data access handle
may change, when the selected instance for its parent
changes (e.g. changing the selected person will result in
another children subset in the children access handle.

 In a relational environment this information is available
as well, but must be calculated from the attributes in the
person table or from a many-to-many relationship table.

 For derived sub sets it becomes more difficult to provide
unique identifiers for identifying a sub set, which are
strongly recommended to make ADL performing proper-
ly.

 Another extension is very useful, but not necessarily re-
quired for ADL. This is the definition of base collections.
When working with local collection, in many cases on
collection can be defined as superset of another collec-
tion, e.g. Persons as superset for person’s children (ab-
solute super set) or employees of a company as super
set for the head of a section in this company (relative
super set).

 As well as enumerated values, defining supersets is a
simple way of automatically displaying choice values in a
drop combo box or in a radio button control.

Data source The data handle by a data access handle might be de-
fined in a number of different ways.

Constant Constant data is a way to define data for headlines in a
multiple region list or for other purposes. Constant data
access handles are positioned after being opened and
will never change the state (even though they may
change the value).

Transient data An access handle may refer to transient data, which is
not stored externally and available within the application,
only. Transient data can be updated by the application.
In many cases transient data contains derived values as
sums or percentages.

Global collection Data access handles for global collection refer to extents
(OODBMS) or tables (RDBMS).

Property Data access handles for properties refer to attributes or
local collections defined for the instances in the parent
data access handle.

 Page 13 of 24

Expression Data access handles for expressions (SQL or OQL que-
ries or access paths) may refer to elementary data, in-
stances or collections calculated according to the ex-
pression or access path.

Since OQL queries or access paths can be defined rela-
tive to the selected instance, the will perform better than
SQL queries, because detecting dependencies for an
SQL query is more difficult.

Data states Data states describe the state of a data access handle,
i.e. whether it is opened, an instance is selected etc. Da-
ta states do not depend on the type of data source han-
dled by the access handle.

 The state of a subordinated data access handle depends
on its parent. In the example above this means, that the
data access handles for children and p_name are invalid
as long as no instance in the data access handle for
person is positioned.

 Thus, data for subordinated data access handles can be
accessed (located, updated etc.) only, when its parent is
selected and positioned. Unselecting the parent auto-
matically invalidates all children.

 Most relevant data access handle states are:

Invalid

A data access handle is opened, when it not is valid but
has been successfully creates, e.g. when it has a parent
and the parent is not selected.

Opened

A data access handle is opened, when it not is valid but
has been successfully creates, e.g. when it has a parent
and the parent is not selected.

Valid The data access handle is valid, i.e. one may select or
position an instance. A data access handle is valid,
when id does not have a parent and is opened or when
its parent has the state Selected.

(implies opened)

Selected An instance in a collection has been selected (but not
necessarily read).

(implies valid)

Initialized A new instance in a data access handle has been pro-
vided. All subordinated database handle for attributes
are considered as Initialized as well.

(implies valid)

Positioned An instance in a data access handle has been selected
and read. In this state all subsequent data access han-
dles are valid.

Data access handles for attributes (elementary or com-
plex) are automatically positioned, when its parent is po-
sitioned.

(implies selected)

ReadOnly An instance in a collection is positioned but cannot be
updated.

(implies positioned)

Translating data
states

Data states can directly be translated into essential data
control handle states. Data control handle states are de-
scribed in “Data Control Handle”.

 Data states area directly translates into control states as
follows:

 Data state Control State

 ReadOnly  ReadOnly

 Positioned  CanUpdate

 Initialized  CanUpdate

 Selected  CanCreate

 Valid  CanCreate

 Opened  Disabled

 Invalid  Inactive

Data Events Data events are fired, when the data access handle
changes. Whenever a data event happens it is sent to
the linked data control handles calling an appropriate
control action.

Data events can be divided into two sub-groups: Proper-
ty events and instance events.

 Page 15 of 24

property opened A data access handle has been opened. This event
causes the data control handle to activate itself. This
may also include positioning the data access handle,
which, again, will generate a read event.

property reset A property reset event is generated, when the data ac-
cess handle state turns into opened (e.g. from valid or
positioned). This is usually the case, when the parent for
a data access handle changes the positioned instance.

The property reset event causes the control handle to
clear all data displayed.

instance reset An instance reset event is generated, when the data ac-
cess handle state turns from positioned or selected into
valid. This is usually the case, when changing the selec-
tion instance in the access handle.

The reset event creates property reset events for all
subordinated data access handles.

instance deleted The deleted or removed event results in a valid state for
the data access handle. This event is generated instead
of an instance reset event in this case, to indicate that
the instance has been reset because of a remove or de-
lete operation for the currently selected instance.

instance located A located event is fired when the access handle state
changes to selected or when the selection changes.
Changing the selection in the access handle first chang-
es the access handle state into valid before it is changed
to located.

instance read A read event is fired when the access handle state
changes to positioned. This also happens when the posi-
tioned instance for a data access handle is changed.

The instance read handle generates property read
events for all subordinated data access handles.

The read event might be preceded by a reset event in
case of changing the positioned instance, since this will
be unselected before positioning the new instance.
Moreover, a locate event is generated, since the in-
stance to be positioned must be located before.

instance insert-
ed

The inserted event results in a positioned state for the
data access handle. This event is generated instead of
an instance read event in this case, to indicate that the
positioned instance has been created before being read.

instance updat-
ed

The updated event does not change the positioned state
for the data access handle. This event is generated to
indicate that the positioned instance has been updated.

property updat-
ed

The property updated event indicates, that an elemen-
tary value has been updated or that the instances refer-
enced in a collection (global or local set) have been
changed, which is usually the case, when instances
have been added to or removed from the collection or
when the currently active index for accessing the in-
stances has been changed.

property refresh A data access handle, which had the state opened
changed to state valid. This usually happens for subor-
dinated data access handles, when the parent handle
changes its state to positioned.

Note, that changing an instance in the data access han-
dle first unselects the current instance, which changes
the data stated to opened for all subordinated data ac-
cess handles and generates a reset events. Afterwards,
positioning the new instance will change the state again
to valid, which generates a refresh event.

A refresh event causes the control handle to initialize its
data. In case of collection controls, this usually results in
filling in the list.

instance initial-
ized

Changing the state to initialized will cause a fill data ac-
tion, which fills in initial data into the controls.

Event caching The list of generated events is not complete but de-
scribes the most relevant events in the context of ADL.
Since any simple action may generate a number of read
events, an event cache mechanism becomes necessary.

 Event caching not only collects events fired while per-
forming a data access handle operation but also opti-
mizes events by overwriting low priority events. This be-
comes even more important when considering the fact,
that business rules may cause additional data access
handle events.

Events are optimized for each data access handle sepa-
rately.

 Page 17 of 24

Implicit caching Implicit event caching is done automatically while run-
ning a data access handle action.

In case of calling an eraseCollection action, the da-

ta access handle will fire an instance reset event at the
end of the action even though a number of instances has
been removed. Moreover, all subordinated access han-
dle will fire one reset property event.

Application
event caching

Events can be cached in the application starting and
stopping event caching. This is necessary to allow com-
plex operation in the application, but being able to syn-
chronize the GUI state after the action has been com-
pleted.

Disable events Another feature required is disabling events. This be-
comes necessary to perform internal or application ac-
tions, which should not be reflected on the user inter-
face.

When disabling events, the application is responsible to
synchronize the data access handle state with the cur-
rent GUI state.

Inactive data
access handles

In some cases generated read events may heavily dis-
turb the application behaviour, especially when handling
asynchronous data control events. To avoid this, inactive
data access handles, which do not generate events, are
required.

Further require-
ments

Besides supporting data navigation and event generat-
ing, data access handles must provide two more essen-
tial features to act successfully in an ADL environment.

One problem ADL creates are recursively working
events, i.e. a read event creates read events or refresh
events for all subordinated access handles which again
may cause further read events. On the other hand, es-
pecially read events are very often generated and should
not cause any action, when the control state does not
change, i.e. when the instance or collection is still the
same and has not been modified.

Identity Since there is no direct connection between data access
handle and data control handle, ADL becomes very inef-
ficient when instances cannot be identified. Thus, the
access handle must provide unique identities for select-
ed instances as well as for current collections.

Modification
count

An application cannot trust that all updates and changes
are signalled properly to the application. Other applica-
tions may change data without signalling this to ADL or
the application. Hence, data displayed in the controls
might become outdated.

To ensure, that data is always up-to-date, ADL requires
a modification count for instances and collections (in-
cluding subsets), which allows detecting external modifi-
cations on instances and collections.

Databases ADL can be built in principle based on any type of data-
base or data source. As long as identities and modifica-
tion counts are not supported, ADL requires an ADL data
source layer, that manages identity and modification
count for the underlying data.

Required infor-
mation

Since XML or relational data bases usually do not main-
tain modification count and instance identity, additional
implementation effort is required for running an ADL im-
plementation based on relational databases.

Events In order to provide an ADL based system, generic data
events have to be supported by the used database
management system. Generic data events as updated or
deleted are supported by most database systems, but
normally on instance level, only. In order to implement
ADL, also generic collection events are required (e.g. in-
serted, removed).

Event handler Many relational databases support triggers for handling
events, but those are implemented for specific tables,
i.e. one cannot refer to generic event handlers. Moreo-
ver, relational databases provide data usually as result
of queries, e.g. in record sets or comparable constructs.

 Generic event handlers, which may register to access
handlers as record sets (MS SQL Server) or property
handles (ODABA) are necessary for providing ADL for a
database system.

 Page 19 of 24

Which DBMS to
use

Any database system, which supports generic data
events (and most database system do so) for both, in-
stances and collections (not so many support collection
events) is a candidate for implementing ADL. Moreover,
the database system has to support generic data event
handlers, which is also not a very common feature.

One example for an ADL implementation is the ODABA
GUI framework that also supports ADL for relational da-
tabases by adding an independent ADL database layer,
which allows running ADL for most relational databases.

 It depends on the further development of big database
providers, whether such an development becomes nec-
essary or not.

Summary In an ADL environment the data access handle is tightly
connected with the data control handle.

  Event mechanisms indicating state transitions in the
access handle are one possible way of connecting
access handles with control handles.

  Event caching helps to avoid an event inflation and
allows optimizing generated events

  Disabling events is a risk since ADL cannot guaran-
tee consistency between the access handle state
and the control states. Nevertheless, ADL becomes
difficult to handle without such a feature.

  For handling asynchronous control events, inactive
data access handles are required.

  Identifier for instances and collections (including
subsets) are required for optimisation.

  Modification counts for instances and collections are
required for guaranteeing consistency.

4 Data Control Handle

 Data control handle are used to display data in different
ways on the user interface. Data displayed in control
handles depends on the application state and the data
source providing the data.

 Data sources for control handles might deliver persistent
or transient data. Since in ADL the control handle com-
municates with a data access handle, this will not make
any difference.

Control Handle
Types

Control handle are of different complexity. Control han-
dle specialisations (specialised control handle types)
may react differently on events generated by data ac-
cess handles.

Control handle types can be classified into four relevant
groups:

static Static control handles are not linked to a data access
handle and display an uncontrolled data value (usually a
constant text or image).

elementary Elementary control handles display elementary data.
Usually, but not necessarily, elementary control handles
are linked with an elementary data access handle, which
provides elementary data (as number or text).

DropComboBoxes are considered as elementary, since
they refer to elementary data, which is displayed in the
line field on top. The droppable list, however, is a collec-
tion control, which usually is linked to the base collection
(super set) of the displayed instance.

collection Collection handles display collections of data, i.e. usually
global (table) or local sets (subsets). Typical collection
type controls are lists and table grids. Usually collection
control handles display instances in a collection in a
number of lines (one line for each instance).

complex Complex control handles usually consist of several sub-
ordinated control handles, which may display properties
of one or more instances. Typical complex control han-
dles are forms and sub-forms.

 Page 21 of 24

Links to Data Ac-
cess Handle

Each control handle (except static) is usually linked with
exactly one data access handle. Elementary and com-
plex control handles refer to the positioned instance in
the data access handle. No data is displayed for those
controls, when no instance is positioned in the data ac-
cess handle and when no instance is initialized.

 Collection control handles in most cases refer to a global
collection (table) or are linked to a local collection (sub-
set) by a subordinated data access handle.

Multiple data
sources

Collection controls can be linked, however, to more than
one data source for displaying more than one collection
in the same list (e.g. parents and children). It depends
on the GUI system, how those multiple collections are
represented in the control.

ADL supports a hierarchical structure for regions and
columns.

Regions ADL data control handles support any number of regions
in a data control. Each region is linked to a data access
handle.

Each region may have any number of sub-regions, re-
gardless whether the control is a tree or a table. Moreo-
ver, regions can be defined recursively:

 Region persRegion(person);

Region childRegion(persRegion,”children”);

Region childRecursive(childRegion);

 Region structures might be very complex and it is the
task of ADL to optimize displayed data in large trees or
lists.

Columns Each regions may display a default key as text in the list
or may define a number of columns, where each column
is linked to a subordinated data access handle of the re-
gion access handle.

When a column refers to complex data, the column may
have sub columns, which is linked again to subordinated
data access handles for the column handle.

Control states Data control handles do have a number of relevant
states, which control the behaviour of the control.

Data state The data state in a control is stored mainly as unique
identifier and last mod count. Those information are suf-
ficient to determine, whether data in the display need to
be updated or not.

Data states are stored based on the displayed infor-
mation, i.e. not per data access handle linked to the con-
trol but per displayed data item. That means that in a ta-
ble or tree each data cell has its identity and modification
count information. If not, ADL will not behave consistent-
ly.

Has focus The has-focus toggle state indicates, whether the control
has the focus or not. Usually, actions related to the con-
trol can be activated only, when the control has the fo-
cus.

Hidden The hidden or visible toggle state indicates, whether the
control is visible to the user or not. When not being visi-
ble, the control will not update displayed data when re-
ceiving an update or read event.

When changing the state to visible (or not hidden), the
data displayed in the control will be updated according to
the instance identifier and modification count.

Disabled The enabled or disabled toggle state indicates, whether
the control behaves or not. When being disabled, the
control will not react on any user input including display-
ing context menu or reacting on function keys. Usually,
disabled controls do not even get the focus.

Read only The read-only or update toggle state indicates, whether
data can be entered in the control. For multiple data
source controls the read-only state is set for each data
cell (region/column) displayed in the control.

Read-only state still allows context menus and supports
function keys. Some of the default actions are disabled.

Properties Even though a number of other control properties as
size, colour or position, determine the state for the data
control, those are not relevant for ADL. Nevertheless,
functionality is required for the data control handle to
support modifications of these properties.

 Page 23 of 24

Control events Control events are fired to indicate a state transition for
the control, but also to submit asynchronous require-
ments. The list of handled events is not complete but
considers the most relevant and typical GUI events and
the way they are handles in ADL.

get focus When the control gets the focus, the data access handle
should be checked for modification. In case of collection
handles the visible collections are checked for modifica-
tion and updated when required as well as the current or
selected instance in the list.

In case of modifications data in the control is re-read and
updated. Reading may cause several events for subor-
dinated data control handles linked to subordinated data
access handles.

loose focus When a control looses the focus, it stores data to the da-
tabase, when data has been updated. This happens al-
so, when a cell has been edited (in which case it tempo-
rarily becomes a subordinated control handle to the list)
and leaves the edit state. Storing data in the data access
handle will cause an instance update event.

current changed The current changed event is fired from collection con-
trol, when the currently selected instance has been
changed by selecting another one. This event causes
the data access handler linked to the current region to
locate (or read) the newly selected instance.

It will also check its sub regions for updates and refill,
when required.

In case the region has a hierarchy of parent regions, for
each parent region the data item will be positioned.

 Thus, changing the current list item may cause a number
of read and locate actions, which often have a strong in-
fluence on the data displayed in the application.

paint The paint event is an asynchrony event generated by the
control handle to update displayed data. For updating
displayed data a number of read actions are required
which may heavily disturb the appearance of the applica-
tion.

To avoid this, collection controls create an inactive copy
of the linked data access handle, which is only used for
asynchronous updates and which does not generate da-
ta events.

Summary To get ADL properly running, the data control handle in-
terface must fulfil the following requirements:

  All investigated GUI systems (QT, Visual Basic, and
Delphi) support the minimum requirements for an
ADL system and can be used as GUI system for
ADL.

  Data control handle must support elementary, com-
plex and collection controls. Moreover, complex ap-
plications require multiple data source controls.

  The control states described in this chapter must be
supported. This, however, is the case in most GUI
systems.

  The GUI system must fire events comparable to the
control events listed above. Usually, GUI systems
generate much more events, which ADL can react
on, but the listed events are the essential ones.

