
- 1 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100101001

run

Quick Starter Guide

ODABANG

- 2 -

Summary

The document provides necessary steps to get a project implemented quickly. It
includes quick start of the ClassEditor as well as a short starter guide for the de-
signer.

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, May 2013

- 3 -

Table of Contents
 1 Introduction...5

 2 Installation...7

 2.1 Installing ODABA under Linux...8
 2.1.1 Compile and install the Linux Package...8
 2.1.2 Install documentation..9

 2.2 Installing ODABA under MS Windows...10
 2.2.1 Installing ODABA binaries under MS Windows...............................11
 2.2.2 Install documentation..12
 2.2.3 Compile Windows version...12
 2.2.4 .Net features..13

 2.2.4.1 .Net installation..13
 2.2.4.2 .Net wrapper library...14
 2.2.4.3 MS Office document generation..19

2.2.4.3.1Call creating MS Office document.......................................20

 2.3 Version upgrade..22

 3 8 Steps to run an ODABA GUI application..24

 3.1 Create new project..25
 3.1.1 Create the Sample project (Linux)...27
 3.1.2 Create the Sample project (Windows)...28

 3.2 Load database schema...29
 3.2.1 Load Schema (Linux)..31
 3.2.2 Load Schema (Windows)..32
 3.2.3 ODL Script comments...34

 3.3 View or update schema definitions..35
 3.3.1 Initializing the ClassEditor (Linux)...37
 3.3.2 Initializing the ClassEditor (Windows)...38

 3.4 Create test data...39
 3.4.1 Create test data (Linux)...43
 3.4.2 Create test data (Windows)...44
 3.4.3 OSI Script comments..46

 3.5 Evaluate test data..47
 3.5.1 Evaluate test data (Linux)..49
 3.5.2 Evaluate test data (Windows)..50
 3.5.3 OShell Script comments..51

 3.6 Design a GUI application...52
 3.6.1 Starting Designer..52

- 4 -

 3.6.1.1 Calling Designer (Linux)..59
 3.6.1.2 Calling Designer (Windows)..60

 3.6.2 Create project resource...60
 3.6.3 Initialize project window from design pattern...................................61
 3.6.4 Standard application elements..62
 3.6.5 Defining data sources..64
 3.6.6 Create new design classes...65
 3.6.7 Virtual controls..65
 3.6.8 Design a complex control..68

 3.7 Define application rules...71
 3.7.1 Create new context class..71
 3.7.2 Edit context class..73
 3.7.3 [Create application rules library (context class library)].................74

 3.7.3.1 Update external resources..75
 3.7.3.2 Compile application context classes.......................................76

3.7.3.2.1Create context library (Windows)..77
3.7.3.2.2Create context library (Linux)..77

 3.7.3.3 Update application context interface.......................................77

 3.8 Run the application..79
 3.8.1 Run the Application (Linux)...80
 3.8.2 Run the application (Windows)..80

- 5 -

1 Introduction

ODABA

ODABA is a terminology-oriented database system that allows storing objects and
methods as well as causalities . As terminology-oriented database, ODABA sup-
ports complex object types (user-defined data types) defined in a terminology
model, which reflect application relevant concepts.

ODABA applications are characterized by high flexibility. In addition to object type
or context hierarchies, ODABA supports multifarious relations between object in-
stances (master and detail relations, relations between independent object in-
stances and others). This way, behavior of objects in the real world can be repre-
sented considerably better than in relational database systems.

ODABA supports event-driven applications concerning the graphical user interface
as well as the database level. Thus, application design is tightly related to the ex-
perts or customers problem, since it refers to the same names and concepts as
being defined by subject matter experts. This enables ODABA to solve highly com-
plex jobs in administrative and knowledge areas.

Platforms

ODABA supports windows platforms (from Windows 95 up to Windows8) as well
as UNIX platforms and Mac OS (. ODABA supports 64 and 32 bit technologies.

ODABA also runs well in heterogeneous client/server environments or with Inter-
net servers.

Interfaces

ODABA supports several technical interfaces:

• C++, .Net as application program interface (this allows e.g. using ODABA
in C# or VB scripts and applications)

• ODABA Script Interface (OSI) for accessing data via a script language,
which is similar to C# or JAVA.

• Multiple storage support for using relational databases for storing ODABA
data

• XML for supporting data exchange with complex data structures

• OIF (object interchange format), flat files and ESDF (extended self delim-
iter fields) for accessing data provided in external file formats

• Document exchange support for importing or exporting data from/to open
office or Microsoft office documents.

- 6 -

Tools

ODABA provides a number of database maintenance tools, but also development
tools in order to provide terminology model definitions, data model specifications,
application design and others.

To support just-in-time documentation, all ODABA tools provide extended docu-
mentation facilities, which are the base for generating system and WEB documen-
tation, but also online help systems.

License agreements and development support

License regulations contain the agreements for using ODABA. Practically, one
may use ODABA as long as publishing products as Open Source products under
GPL, again. Besides the GPL there is a commercial license available, which allows
using ODABA for creating products, which do not require a GPL.

ODABA does not require run-time licenses for ODABA applications, except some
special advanced features (in this version it is the RDBMS controller for running
ODABA on relational database systems). Usually, advanced features become part
of the open source agreement after a few years.

One may use the GPL in order to develop other software licensed under GPL. In
order to develop commercial software not licensed as GPL product, one may get
a commercial development license.

Note, the the GPL allows creating any sort of GPL projects, i.e. projects for own
purposes as well as well as commercial products (as long as those are published
under GPL, again). In order to develop non-GPL products, a commercial develop-
ment license is required, which can be ordered at RUN-Software.

One may also join the ODABA Software Development Foundation, which supports
the further ODABA development and which gives you a chance to participate in
strategic and short term decisions.

- 7 -

2 Installation

For installing ODABA follow the steps described in the installation manual. The In-
stallation Guide describes the main steps for installing ODABA and tools. This doc-
ument is delivered together with the installation. The installation guide also in-
cludes a quick start manual for creating a new project or running the sample
project.

Source code installation consists of three commands:

• configure - setting installation options
• make - compile ODABA and GUI framework
• make install - move binaries to run-time environment

Since ODABA 11.1 autotools are supported. Therefore, configuring build and in-
stall of ODABA is now similar for all package.

- 8 -

2.1 Installing ODABA under Linux

The following types of installations are provided for Linux:

• Source code (odaba-nn.n.n.tar.bz2)
• Documentation (odaba-doc-nn.n.n.zip)
• Additional plugins (odaba-plugins-nn.n.n.tar.bz2)
• ODABA sample and development databases (odaba-dat-nn.n.n.zip)

where nn.n.n refers to the current version number (e.g. 12.3.0).

Documentation, which is also provided online, might be installed also on a local
folder.

Source package

For Linux, no binaries are delivered. Source packages have to be compiled with
the required compiler.

Documentation

Documentation, which is also provided online, might be installed on a local direc-
tory. In order to start the HTML documentation for ODABA or ODABA GUI, one
has to start

• .../HTMLDoc/odaba/index.html or
• .../HTMLDoc/odabagui/index.html

Plugin packages

Plugin packages provide several user controls for the ODABA GUI framework.
Plugin packages are provided as source packages and have to be compiled for
the used compiler version.

Databases

In order to install databases, the database package may be copied from the .zip
file.

Beside several sample databases the package contains the ODABA development
databases, which contain the complete ODABA and GUI framework code, as well
as design and documentation. This provides direct access to ODABA development
resources and allow customizing tools for specific requirements.

2.1.1 Compile and install the Linux Package

In order to install the Linux package, odaba-12.0.0.tar.bz2 (or any other version)
may be downloaded from http://sourceforge.net/p/odaba/. The package contains
the complete documentation and the sources and procedures to build the soft-
ware.

http://sourceforge.net/p/odaba/

- 9 -

After unpacking and copying the files to local directories, one may compile the sys-
tem. In order to build the basic database libraries and tools, only the base sources
need to be build. In order to build the GUI framework and ODABA GUI tools, QT 4
has to be installed as development-package.

ODABA can be installed on any Linux (Suse, Fedora, Gentoo, Arch). In order to in-
stall ODABA, you have to

• unpack the installation file
• compile the source-package for your platform
• roll a package and use the facilities provided by you distribution to install

After installing ODABA, menu items for starting ODABA Tools are provided in the
applications menu.

Please read the INSTALL file provided with the source package as it contains hints
about the dependencies your system has to provide.

Unpack installation file

In order to unpack the installation file, one may simply call

$ tar xjf odaba-[version].tar.bz2

where version is the current version number of the ODABA release (e.g. 12.0.0).
The result is the ODABA-source tree in a directory 'odaba-[version]'.

Notes: I requires about 100 MB of free disk space to unpack ODABA.

2.1.2 Install documentation

In order to run the documentation system locally, download odaba_doc-12.0.0.zip
(or a higher version) from http://sourceforge.net/p/odaba. and unpack the com-
pressed file into a local directory.

$ cp usr/share/doc/odaba/HTMLDoc.tar.bz2 /tmp
$ cd /tmp
$ tar xjf HTMLDoc.tar.bz2

After installing you will find a set of .pdf documents in the doc/PDFDoc folder in
the installation folder. The WEB browser documentation can be started from
doc/HTMLDoc/odaba/index.html of from doc/HTMLDoc/odabagui/index.html
(GUI framework and tools documentation).

For uninstalling documentation, one may simply remove the documentation direc-
tory.

http://sourceforge.net/p/odaba

- 10 -

2.2 Installing ODABA under MS Windows

Three types of installations are provided for windows:

• Binaries (odaba-win-nn.n.n.zip, odaba-win-nn.n.n.msi)
• Source code (odaba-nn.n.n.zip)
• Documentation (odaba-doc-nn.n.n.zip, odaba-doc-nn.n.n.msi)
• Additional plugins (odaba-plugins-nn.n.n.zip)
• ODABA sample and development databases (odaba-dat-nn.n.n.zip, od-

aba-doc-nn.n.n.msi)

where nn.n.n refers to the current version number (e.g. 12.3.0).

Binary package

Binary packages are available as .msi (installation file) and .zip file. When using
the .msi file it may become necessary to uninstall ODABA before re-installing.
Since ODABA installation does not require the Windows registry, one may also
simply copy the content of the .zip file into a folder.

Binaries are provided as MS C++ v 10.

Source package

The source package should be used, when another compiler version than MS VS
10 is required. In this case, the source package has to be recompiled with the re-
quired compiler version. Beginning with version 7 all MS C++ compiler versions
might be used.

Documentation

Documentation, which is also provided online, might be installed on a local folder.
In order to start the HTML documentation for ODABA or ODABA GUI, one has to
start

• .../HTMLDoc/odaba/index.html or
• .../HTMLDoc/odabagui/index.html

Plugin packages

Plugin packages provide several user controls for the ODABA GUI framework.
Plugin packages are provided as source packeges and have to be compiled for
the used compiler version.

Databases

The database package is also provided as .msi installation file. Nevertheless, no
specific installation is required and the databases may be simply copied from
the .zip file, as well.

- 11 -

Beside several sample databases the package contains the ODABA development
databases, which contain the complete ODABA and GUI framework code, as well
as design and documentation. This provides direct access to ODABA development
resources and allow customizing tools for specific requirements.

2.2.1 Installing ODABA binaries under MS Windows

ODABA can be installed on a Microsoft operating system (Windows 2000, XP,
Vista, etc). Depending on the installation type ODABA requires about 150 MB
space on hard disk (without sources) and about 500 MB with source installation.

After installing ODABA, a menu item ODABA has been installed in the Start menu,
which provides several sub items in order to browse the ODABA development
databases, documentation and design. This allows you, e.g. to customize the de-
sign for your specific requirements.

Notes: Before installing a new release or version of ODABA it is suggested to
uninstall the previously installed version.

Running installation

In order to install ODABA, one may run the installation by double clicking the od-
aba-win-version.msi installation file, where version is the current release number
(e.g. 10.0.0). When ODABA has already been installed, it is necessary to uninstall
ODABA before re-installing.

While installing, you are requested to "sign" the license agreement. The license is
GPL and allows you using ODABA as long as everything you produce with the
help of ODABA is open source, again. In order to provide commercial products,
you have to apply for a commercial developer license.

- 12 -

After installing ODABA one may run the 8 steps sample installation or make any
kind of project.

2.2.2 Install documentation

In order to run the documentation system locally, one may download odaba_doc-
12.0.0.msi or odaba_doc-12.0.0.zip (or any other version) from http://source-
forge.net/p/odaba. One may either unpack the .zip file into a local folder or install
the .msi file.

After installing a set of .pdf documents has been copied to the doc/PDFDoc folder
in the installation folder. The WEB browser documentation can be started from
doc\HTMLDoc\odaba\index.html of from doc\HTMLDoc\odabagui\index.html
(GUI framework and tools documentation).

In order to uninstall documentation, you just remove the installation folder.

2.2.3 Compile Windows version

In order to install the Windows package by recompiling the system, odaba-
12.0.0.zip (or a higher version) may be downloaded from
http://sourceforge.net/p/odaba. The package contains the complete documentation
and the sources and procedures for rebuild the software. Besides, the package
contains ODABA development databases for examining ODABA resources
(source code, GUI resources).

After unpacking and copying the files to local directories, one may compile the sys-
tem. In order to build the basic database libraries and tools, only the base sources
need to be build. In order to build the GUI framework and ODABA GUI tools, QT
4.4 (Qt 4.7 or 4.8 suggested) must have been installed.

ODABA can be installed on several MS Windows platforms (from Windows
2000/XP to Windows 7). In order to install ODABA, the following steps have to be
performed

• unpack the installation file
• Configure installation
• compile the source package with the required compiler
• install binaries, i.e. setup the ODABA folder

After installing the package successfully, one may create your own projects or load
the ODABA databases in order to view ODABA resource details.

The standard installation does not include .Net support. In order to build the .Net
interface see .Net features (sub topic).

http://sourceforge.net/p/odaba
http://sourceforge.net/p/odaba
http://sourceforge.net/p/odaba

- 13 -

Unpack installation file

The installation is provided as simple .zip file, which can be unpacked easily by
calling e.g.

unzip.exe odaba-nn.x.x.zip

nn.x.x stands for current version, subversion and release number. A directory
with the name odaba-nn.x.x will be created at the current location. After un-
packing one may configure and compile the system with the required compiler.

2.2.4 .Net features

In order to use the .Net interface, the .Net library has to be created. An model pro-
cedure for installing a .Net library is provided in the next sub topic (.Net installa-
tion). The .Net library ODABA-net.dll may be referenced in MS Visual Studio .Net
projects by referencing the ODABA-net.tlb type library, which has been created
with the installation.

Using the interface in VB script programs (e.g. MS Office macros) causes some
problems, since the ODABA interface uses many names, which are reserved
names for VB Script. A simple workaround is providing a wrapper library as C# or
VB interface library, which is described in sub topic .Net wrapper library.

In order to use MS Office extensions (document generation), additional resources
are required, which are not part of the installation. How to make those resources
available is described in sub topic MS Office document generation.

2.2.4.1 .Net installation

In order to install the ODABA .Net interface, ODABA-net plug-in has to be installed
(????). The plug-in includes the dot net-connector, which is a generic solution for
creating .Net interfaces from C++ applications.

Building .Net libraries is not part of the default installation. When one has compiled
the Windows version, for using the .Net interface it is necessary to build the .Net li -
braries. The example below shows a procedure, which just has to be adapted to
the current environment.

@setlocal
@if "%VS_ENVIRONMENT%" == "defined" @goto Start
@call "%VS100COMNTOOLS%vsvars32.bat"
@set S10_ENVIRONMENT=defined
@set ODABAROOT=... --> set the current odaba source root
folder from the installation
@set ODABA_DIR=...odaba --> Replace with the odaba binary
directory
rem the dotnet-connector installation is required
(https://github.com/git-e/dotnet-connector)

- 14 -

@set DNCROOT=...dotnet-connector --> Replace with dotnet-connector
installation directory
@set ROOT=%ODABAROOT%\opa\opi\odaba

rem Compile native part
:native
@if not exist %ROOT%\lib\dnc @mkdir %ROOT%\lib\dnc
@pushd %ROOT%\lib\dnc
del /F /Q *.obj
cl /Zi /RTCscu /GR /I%DNCROOT\include% /I"%ODABA_DIR%\include"
/Il:\opa /c /EHsc %ROOT%\qlib*.dnc.cpp
@popd %DNCROOT\include%

rem 3. Compile managend part
:managed
@if not exist %ROOT%\lib\dnc-cli @mkdir %ROOT%\lib\dnc-cli
@pushd %ROOT%\lib\dnc-cli
del /F /Q *.obj
cl /Zi /GR /AI %DNCROOT%\build /I%DNCROOT%\include /I"%ODABA_DIR
%\include" /I%ODABAROOT%\opa /c /clr /wd4355 /wd4490 %ROOT
%\qlib*.dnc.cpp
@popd

rem 4. Link the whole thing
:link
@if not exist %ROOT%\exe @mkdir %ROOT%\exe
@pushd %ROOT%\exe
rem : build .res
l:\odet\IncreaseID.exe %ROOT%\tpl\odaba-net_version.h %ROOT%\rc\odaba-
net.h build
copy %ROOT%\rc\odaba-net.h %ROOT%\temp\version.h
copy l:\bat\version\win32_version.rc %ROOT%\temp\odaba-net.rc
rc %ROOT%\temp\odaba-net.rc
rem : link with signing
::link /KEYFILE:l:\bat\run-dll.key %ROOT%\lib\dnc*.obj %ROOT%\lib\dnc-
cli*.obj %ROOT%\temp\odaba-net.res %ODABA_DIR%\lib\opa.lib %DNCROOT
%\build\dotnet-connector.lib /OUT:odaba-net.dll /NODEFAULTLIB:LIBCMT
/DEBUG /DLL
rem : link without signing
link %ROOT%\lib\dnc*.obj %ROOT%\lib\dnc-cli*.obj %ROOT%\temp\odaba-
net.res %ODABA_DIR%\lib\opa.lib %DNCROOT%\build\dotnet-connector.lib
/OUT:odaba-net.dll /NODEFAULTLIB:LIBCMT /DEBUG /DLL
copy odaba-net.dll %ODABA_DIR%\.
regasm %ODABA_DIR%\odaba-net.dll /tlb:odaba-net.tlb
@popd

2.2.4.2 .Net wrapper library

For using the ODABA .Net interface from within MS VB Script, a wrapper library
has to be provided for several reasons. The example below shows the wrapper li-
brary used for in MS Word macros for document generation.

The ODatabase class Provides functions that allow opening an ODABA database
by means of an ini-file. Moreover, it provides functions for reading current option

- 15 -

settings (GetOption()) and providing extent property handles
(GetProperty()).

The OProperty class provides property handle access functions. Since several
function names used in ODABA are reserved names in VB, some function names
had to be changed (e.g. next() became ReadNext()).

Finally, the OValue class provides enhanced value access to values stored in the
database.

The example below is part of the .Net project provided for MS Office support.

Option Strict Off
Option Explicit On

<System.Runtime.InteropServices.ProgId("ODatabase_NET.ODatabase")> Public
Class ODatabase

 Public ds As odaba.DataSource
 Public db As odaba.Database
 Public dbo As odaba.ObjectSpace
 Public index As Integer
 Public stati As Integer
 Public Function Open(ByRef inifile As String, ByRef section As
String) As Boolean

 Dim location As String
 Dim language As odaba.Option

 Open = True
 location = " (inifile='" & inifile & "', section='" & section &
"') "

 odaba.Application.initialize(inifile, section,
odaba.ApplicationTypes.ConsoleApplication)

 ds = New odaba.DataSource
 ds.open(section)

 dbo = ds.objectSpace
 db = ds.database
 If dbo Is Nothing Or Not dbo.isValid Then
 MsgBox("DataSource" & location & "could not be opened")
 Open = False
 End If

 language = New odaba.Option("DSC_Language")
 If language.toString() = "" Then
 language.assign("English")
 End If
 End Function

 Public Function Close() As Boolean

 'UPGRADE_NOTE: Object odaba may not be destroyed until it is
garbage collected. Click for more: 'ms-
help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1029"'

- 16 -

 If Not IsNothing(db) Then
 db.close()
 End If
 If Not IsNothing(dbo) Then
 dbo.close()
 End If
 If Not IsNothing(ds) Then
 ds.close()
 End If

 Close = True

 End Function
 Public Function GetOption(ByRef opt_name As String) As String
 Dim opt As odaba.Option
 opt = New odaba.Option(opt_name)
 GetOption = opt.toString()
 End Function
 Public Function GetProperty(ByRef ph As OProperty, Optional ByRef
prop_path As String = "") As OProperty

 Dim oprop As OProperty
 Dim cond As Boolean

 oprop = New OProperty
 cond = False
 If prop_path <> "" Then
 If ph Is Nothing Then
 cond = oprop.Open(dbo, prop_path, odaba.AccessModes.Read)
 Else
 cond = oprop.Open(ph, prop_path)
 End If
 End If
 If cond Then
 GetProperty = oprop
 Else
 MsgBox("Could not open property handle for '" & prop_path &
"'")
 GetProperty = Nothing
 End If

 End Function
End Class
<System.Runtime.InteropServices.ProgId("OProperty_NET.OProperty")> Public
Class OProperty
 Public prop As odaba.Property
 Public Function Count() As Integer
 Count = prop.count
 End Function
 Public Function Open(ByRef oprop As OProperty, ByVal path As String)
As Boolean
 prop = New odaba.Property(oprop.prop, path)
 Open = True
 End Function
 Private Function Open(ByRef oprop As odaba.Property, ByVal path As
String) As Boolean
 prop = New odaba.Property(oprop, path)
 Open = True

- 17 -

 End Function
 Public Function Open(ByRef db As odaba.ObjectSpace, ByVal osi_path As
String, ByVal accmode As odaba.AccessModes) As Boolean
 prop = New odaba.Property(db, osi_path, accmode)
 Open = True
 End Function
 Public Function Read(ByRef key As String) As Boolean
 Dim skey As New odaba.Key(key)
 Read = False
 If prop.tryGet(skey) Then
 Read = True
 End If
 End Function
 Public Function Read(ByVal num As Integer) As Boolean
 Read = False
 If prop.tryGet(num) Then
 Read = True
 End If
 End Function
 Public Function ReadFirst(Optional ByVal read_opt As Boolean = True)
As Boolean
 ReadFirst = prop.first(read_opt)
 End Function
 Public Function ReadLast(Optional ByVal read_opt As Boolean = True)
As Boolean
 ReadLast = prop.last(read_opt)
 End Function
 Public Function ReadNext(Optional ByVal read_opt As Boolean = True)
As Boolean
 ReadNext = prop.next(read_opt)
 End Function
 Public Function ReadPrevious(Optional ByVal read_opt As Boolean =
True) As Boolean
 ReadPrevious = prop.next(read_opt)
 End Function
 Public Function OProperty(ByRef path As String) As OProperty
 Dim oprop As New OProperty

 If oprop.Open(prop, path) Then
 OProperty = oprop
 Else
 OProperty = Nothing
 End If
 End Function
 Public Function OValue(ByRef path As String) As OValue
 Dim oval As New OValue
 If oval.Open(prop, path) Then
 OValue = oval
 Else
 OValue = Nothing
 End If
 End Function
 Public Function Top() As Boolean
 prop.top()
 Top = True
 End Function
 Public Function ODABAProperty() As odaba.Property
 ODABAProperty = prop

- 18 -

 End Function
End Class
<System.Runtime.InteropServices.ProgId("OValue_NET.OValue")> Public Class
OValue
 Public value As odaba.Value
 Public Function Open(ByRef oprop As OProperty) As Boolean
 value = oprop.prop.value()
 Open = True
 End Function
 Private Function Open(ByRef prop As odaba.Property) As Boolean
 value = prop.value()
 Open = True
 End Function
 Public Function Open(ByRef oprop As OProperty, ByRef path As String)
As Boolean
 value = oprop.prop.value(path)
 Open = True
 End Function
 Public Function Open(ByRef prop As odaba.Property, ByRef path As
String) As Boolean
 value = prop.value(path)
 Open = True
 End Function
 Public Function AsBoolean() As Boolean
 AsBoolean = False
 If AutoSelect() Then
 AsBoolean = value.toBool
 End If
 End Function
 Public Function AsInteger() As Integer
 AsInteger = 0
 If AutoSelect() Then
 AsInteger = value.toInteger
 End If
 End Function
 Public Function AsPlainText() As String
 AsPlainText = ""
 If AutoSelect() Then
 AsPlainText = value.toString.toPlainText
 End If
 End Function
 Public Function AsString() As String
 AsString = ""
 If AutoSelect() Then
 AsString = value.toString
 End If
 End Function
 Public Function AutoSelect() As Boolean
 AutoSelect = False
 value.property.autoSelect()
 If value.property.selected Then
 AutoSelect = True
 End If
 End Function
End Class

- 19 -

2.2.4.3 MS Office document generation

A typical way for generating MS Office documents is using MS Word macro fea-
tures. The Terminus application provides document generation actions, which
may work, however, only when the required document templates have been in-
stalled. Document templates are not part of the ODABA installation and might be
modified or rewritten according to specific requirements.

Typically, MS Office document templates refer to an initial document, which pro-
vides style definitions and title page for the document to be generated. This might
easily be replaced by a more appropriate one. Moreover, styles might be changed,
but not the style names, which are referred to from within the macros. Available
macros and its resources are described below.

In order to support scripting languages as MS VB Script, ODABA .Net libraries
have to be extended by a wrapper library. The .Net project and other resources re-
quired for MS document generation are available at following locations:

• MS Word helper functions

http://www.odaba.com/content/downloads/demos/odabaWordHelper.zip

• Document template

http://www.odaba.com/content/downlads/demos/DocumentTemplates.zip)

Those are just demos for showing, how to get out some documents from an OD-
ABA database. On the other hand, these demos are used by RUN for generating
documentation from Terminus specifications. Usually, document templates are in-
stalled in the template directory (/usr/share/odaba/template under Linux and ...od-
aba/template under MS Windows).

Document templates are provided as .dot files for reference documentation (Refer-
enceDocu.dot), Terminology Model documentation (TerminologyModel.dot) and hi-
erarchical topic documentation (TopicsDocu.dot). Document style definitions are
provided for these templates in .doc files with appropriate names.

Notes: MS Office document generation by means of VB Script macros is one pos-
sible way, but it is rather slow and difficult to maintain. A better way is using Open
Document templates, which generate documents that are accessible in MS Office
as well as in LibreOffice.

MS Word helper functions

The MS Developer Studio 2010 solution provides an ODABA wrapper supporting
ODABA database access and a few MS Word function for opening and closing
word documents. Before compiling the solution, references for odaba-net.dll and
dotnet-connector.dll have to be updated.

The wrapper library works with all MS Office versions from office 1997-2003 up-
wards. It has not been tested with older versions.

http://www.odaba.com/content/downloads/demos/DocumentTemplates.zip
http://www.odaba.com/content/downloads/demos/odabaWordHelper.zip

- 20 -

When opening a document (ODocument::Open()), an ini-file is required, that
contains document and template name. The ini-file is, usually, generated when
calling MS Word macros from within Terminus. Otherwise, an ini-file has to be
provided, which contains a path the document to be created (option name passed
in docname) and a path for a template for initializing the document (option name
passed in templatename).

Two more functions (ODocument::Find() and ODocument::ReplaceText())
are available for convenience.

The odabaDBInterface file provides the ODABA database access function wrapper
for accessing the database (ODatabase), for property handle support (OProp-
erty) and for value access (OValue).

2.2.4.3.1 Call creating MS Office document

In order to call creating an MS Office document, MS Word has to be invoked.
Since the technology for creating MS Office documents is based on MS Word
macros (VB Script), the template document has to be called and executed. Since
this is a different process, an ini-file has to be created and passed to the MS Word
template (macro).

All information requested is passed via an ini-file, which is usually hard-coded in
the document template macro. The document template examples provided in the
.tpl directory of the installation folder shows how to open a database by means of
an ini-file.

When calling an MS Office template (.dot), the location for the template file has to
be passed to the function call (GetTemplatePath() is just a symbolic function
call in the example, which returns the complete path for the document template
file). Other option file variables as location for output file or root object instance for
document have to be set in additional option variables as requested by the docu-
ment template.

// generate document in separate process
bool ...fragment(Property &ph) {
// root object instance is selected in ph

// create ini-file for CreateDocument
 fstream ini_file;
 ini_file.open ("test.ini", fstream::out | fstream::app);

 ini_file << "[SYSTEM]" << std::endl;
 ini_file << "DICTIONARY=" << Option("SYSDB").toString().data() << endl;

 ini_file << "[DOCU]" << std::endl;
 ini_file << "DICTIONARY=" << Option("SYSDB").toString().data() << endl;
 ini_file << "RESOURCES=" << Option("RESDB").toString().data() << endl;
 ini_file << "DATABASE=" << Option("DATDB").toString().data() << endl;
 ini_file << "ONLINE_VERSION=YES" << endl;
 ini_file << "ACCESS_MODE=Write" << endl;

- 21 -

 ini_file << "NET=YES" << endl;
 ini_file << "ODABA_ROOT=" << Option("ODABA_ROOT").toString().data() <<
endl;
 ini_file << "CTXI_DLL=" << Option("CTXI_DLL").toString().data()<< endl;
 ini_file << "TRACE=" << Option("TRACE").toString().data() << endl;
 ini_file << "DSC_Language=" << Option("DSC_Language").toString().data()
endl;
// create option variables for template options
 ini_file.close();

 odaba::String path(Option("ODABA_ROOT"));
 path += "/CreateDocument.exe";
// depending on template reqirements additional optione might be set
 ph.instanceContext().executeShell("open",GetTemplatePath());

 return true;
}

Notes: In the example above, the the document template has to "know", where the
ini-file has been stored.

- 22 -

2.3 Version upgrade

When the ODABA schema version changes, which may happen with a new major
version release, resource databases and databases referring to ODABA system
data types (typically __OBJECT or DSC_Topc), have to be upgraded. The following
paragraphs describe the upgrade procedure required for the latest version.

In order to upgrade a resource database (dictionary), the ode.sys database con-
taining extended system resource definitions is required with old and new version.
The installation contains an appropriate old version database (ode.sys_V21) pre-
ceded by the old version number. The new system database is the ode.sys
shipped with the installation.

Before starting the upgrade procedure (Upgrade.cmd as described below), it is
suggested to create a copy of the old database (here we use the extension _old).
When copying the database terminates successfully, one may replace your dictio-
nary with the upgraded resource database. From the example below, one may
simply create your upgrade procedure by replacing %DB% and storing the Up-
grade.cmd and Upgrade.ini file.

In order to upgrade an application database, which is rarely necessary, nearly the
same procedure might be used. Just the DICTIONARY has to be replaced by old
and new resource database, as shown in the comment lines in the ini-file. In this
case, %DB% refers to the application database to be upgraded while %RDB%
refers to the resource database, which already had been upgraded.

Under Linux a script is provided that evaluates the current database version and
upgrades it to a temporary directory:

(/usr/local/share/odaba/upgrade /path/to/data.base)

- 23 -

// Upgrade.cmd, current directory is odaba
// DB stands for the database location
copy|cp %DB% %DB%_old
CopyResDB Upgrade.ini OLDDB NEWDB
PackDB %DB%_new -p:percent

// when completed successfully, replace DB
copy|cp %DB%_new %DB%

// Upgrade.ini (resource database) - required ini-file for copy
[SYSTEM]
DICTIONARY=ode.sys
DISABLE_CONTEXT=YES

[CopyResDB]
PLATFORM_INDEPENDENT=YES // required for non-windows databases

[OLDDB]
DICTIONARY=ode.sys_V21
DATABASE=%DB%_old
SYSTEM_VERSION=21
NET=NO
ACCESS_MODE=Write
DISABLE_CONTEXT=YES

[NEWDB]
DICTIONARY=ode.sys
DATABASE=%DB%_new
SYSTEM_VERSION=22
NET=NO
ACCESS_MODE=Write
DISABLE_CONTEXT=YES
PLATFORM_INDEPENDENT=YES

- 24 -

3 8 Steps to run an ODABA GUI application

This is a short instruction guide for starters in order to create a database and build
a simple GUI application. The Manual refers to essential steps without being a de-
tailed documentation of different ODABA features. The manual does not follow the
development guide lines, which explicitly suggest beginning with the terminology
model, but it demonstrates the essential technical steps for developing an applica-
tion.

The example starts with installing the software, defining a database schema, cre-
ating and evaluating test data, building a GUI application and creating an applica-
tion context library.

The following steps are to be executed:

• (0) - Install the software (binary or sources)
• (1) - Create Sample project
• (2) - Load schema to database
• [(3) - Update schema]
• (4) - Create test data
• (5) - Evaluate test data
• (6) - Design a GUI application
• (7) - Create application context library
• (8) - Run application

In order not to run into problems when trying the sample, one should name the
sample project Sample. Only in this case, scripts are copied to the proper location
(Sample/osi directory). When using installation defaults, one may simply perform
the steps below. More details are described in the following topics.

default installation
(0) $(HOME)/odaba-10.0.0$./configure
(0) $(HOME)/odaba-10.0.0$ make
(0) $(HOME)/odaba-10.0.0$ sudo make install

linux commands for performind 8 steps to an ODABAS GUI application
(1) /usr/local$ LD_LIBRARY_PATH=lib ./lib/odaba/tools/CreateProject
(2) $(HOME)/odaba/Sample$./ODL.sh
(3) $(HOME)/odaba/Sample$./ClassEditor.sh
(4) $(HOME)/odaba/Sample$./OSI.sh
(5) $(HOME)/odaba/Sample$./OShell.sh
 ODABA>call 'osi/Sample.osh'
 ...
 Sample_dat/Company>quit
(6) $(HOME)/odaba/Sample$./Designer.sh
(7) $(HOME)/odaba/Sample$./ClassEditor.sh
(8) $(HOME)/odaba/Sample$./Main.sh

- 25 -

3.1 Create new project

Creating the sample project differs slightly under Linux and Windows. In any case,
the project should be called Sample in order to be compatible with the subsequent
steps. The way to install the sample under Linux and Windows is described in the
corresponding topic below.

In order to create a new project, CreateProject may be called, which allocates
project resources in a local directory. Project resources created are configuration
(ini) files and procedures for running different ODABA tools. Following procedures
will be generated to the project directory:

• OShell.sh - shell for examining databases
• OSI.sh - running ODABA script file
• ODL.sh - running database definition script (ODL file)
• ClassEditor.sh - starting ODE ClassEditor tool
• Designer.sh - starting ODE GUI designer
• Terminus.sh - starting ODE terminology builder

Under MS Windows, instead of .sh extension .cmd is used. In addition, a configu-
ration file for running the tools mentioned above has been generated in the
project's root directory.

• ode.ini - configuration file for ODE and command line tools

The configuration file contains database locations and application setting in appro-
priate sections. In the example below, the configuration file for a LINUX project is
shown. The configuration file for Windows differs in file locations, only. When cre-
ating a project with the name "Sample", some script files are copied to the project
sub directory Sample/osi:

• Sample.odl - sample database schema definition (ODL file)
• Sample.osi - ODABA script file for generating test data
• Sample.osh - OShelll script for evaluating generated data

In order to build the sample database, one may call ODL.sh for defining the Sam-
ple database schema, OSI.sh for creating Sample test data in a test database
Sample.dat and OShell.sh for evaluating test data. Running the complete program
up to test data generation takes not longer than 3 minutes.

Details for each step are explained in the subsequent topics.

- 26 -

; generated confiruration file - linux
[SYSTEM]
DICTIONARY=/usr/local/share/odaba/ode.sys

; GUI framework (ODE) section - ODE tools
[code]
ODABA_ROOT=/usr/local/
SYSDB=/usr/local/share/odaba/ode.sys
RESDB=/usr/local/share/odaba/ode.dev
DATDB=/home/testuser/odaba/Sample/Sample.dev
TRACE=/home/testuser/odaba/Sample/
PLATFORM_INDEPENDENT=YES

NET=YES
SYSAPPL=YES
ONLINE_VERSION=YES

PROJECT_DLL=Designer
CTXI_DLL=AdkCtxi

; OShell section
[OShell]
ODABA_ROOT=/usr/local/
DSC_Language=English
DefaultEncoding=ASCII
TRACE=/home/testuser/odaba/Sample/

; data source section for resource database
[Sample_dev]
DICTIONARY=/usr/local/share/odaba/ode.sys
RESOURCES=/usr/local/share/odaba/ode.dev
DATABASE=/home/testuser/odaba/Sample/Sample.dev
PLATFORM_INDEPENDENT=YES
NET=YES
ACCESS_MODE=Write
ONLINE_VERSION=YES

; data source section for application database
[Sample_dat]
DICTIONARY=/home/testuser/odaba/Sample/Sample.dev
DATABASE=/home/testuser/odaba/Sample/Sample.dat
PLATFORM_INDEPENDENT=YES
NET=YES
ACCESS_MODE=Write
ONLINE_VERSION=YES

- 27 -

3.1.1 Create the Sample project (Linux)

For the following topic, it is supposed that ODABA had been installed in the default
location (/usr/local). When it had been installed in another place, one simply has
to replace /usr/local references by the location that had been passed in --prefix
when configuring the package. In order to load dynamic libraries properly, the li -
brary path has to be defined.

/usr/local$ LD_LIBRARY_PATH=lib ./lib/odaba/tools/CreatePro-
ject

CreateProject allocates project resources in a local project directory below
/usr/home/user_name/odaba/project_name. The shell files created are config-
ured for calling services for the local project. In order to share project resources, it
may be useful to place resources on proper locations and update shell and config-
uration files by changing locations for referenced resources and server type, when
this becomes necessary..

$ LD_LIBRARY_PATH=/usr/local/lib /usr/local/lib/odaba/tools/CreateProject

2012-03-05 17:50:48 - Running /usr/local/lib/odaba/tools/CreateProject
with:

Setting up ODABA project environment ...
Enter ODABA path [/usr/local] :
Enter project name [] : Sample
Enter project path [/home/testuser/odaba/Sample] :
Use ClassEditor Y(es)/N(o) [YES] :
Use Designer Y(es)/N(o) [YES] :
Use Terminus Y(es)/N(o) [YES] :

Current project settings ...
ODABA path : /usr/local
Project name : Sample
Project path : /usr/home/testuser/odaba/Sample
Use ClassEditor : YES
Use Designer : YES
Use Terminus : YES
 ... enter (a)ccept/(c)ancel/(r)epeat [a] :

/usr/home/testuser/odaba/Sample/ode.ini created
/usr/home/testuser/odaba/Sample/OShell.sh created
/usr/home/testuser/odaba/Sample/OSI.sh created
/usr/home/testuser/odaba/Sample/ODL.sh created
/usr/home/testuser/odaba/Sample/ClassEditor.sh created
/usr/home/testuser/odaba/Sample/Designer.sh created
/usr/home/testuser/odaba/Sample/Terminus.sh created

Notes: Never forget to set the LD_LIBRARY_PATH to the lib directory in odaba
root (/usr/local/lib) before calling CreateProject.

- 28 -

3.1.2 Create the Sample project (Windows)

The CreateProject() function can be called from the ODABA root directory (in-
stallation path), which may be "C:\Program Files\odaba" or something simi-
lar when relying on the default or the location, which had been defined in --prefix
when configuring the system.

...>C:\Program Files\odaba\CreateProject

CreateProject() allocates project resources in a local project directory below
C:\Documents and Settings\user_name\odaba\project_name. The command
files created are configured for calling services for the local project. In order to
share project resources, it may be useful to place resources on proper locations
and update shell and configuration files by changing locations for referenced re-
sources and server type, when this becomes necessary..

12-11-07 - Running CreateProject with:

Setting up ODABA project environment ...
Enter ODABA path [L:\odet\] :
Enter project name [] : Sample
Enter project path [C:\Documents and Settings\my_user\odaba\Sample] :
E:\Sample
Use ClassEditor Y(es)/N(o) [YES] :
Use Designer Y(es)/N(o) [YES] :
Use Terminus Y(es)/N(o) [YES] :

Current project settings ...
ODABA path : L:\odet\
Project name : Sample
Project path : E:\Sample
Use ClassEditor : YES
Use Designer : YES
Use Terminus : YES
 ... enter (a)ccept/(c)ancel/(r)epeat [a] :

E:\Sample\ode.ini created
E:\Sample\OShell.cmd created
E:\Sample\OSI.cmd created
E:\Sample\ODL.cmd created
E:\Sample\ClassEditor.cmd created
E:\Sample\Designer.cmd created
E:\Sample\Terminus.cmd created

Start ODE application ClassEditor Y(es)/N(o) [YES] : n

Notes: When the first prompt does not display an absolute path to the ODABA sys-
tem folder location (second line in the example), you have to enter the absolute
path to the ODABA folder explicitly. Otherwise, one may just press enter.

- 29 -

3.2 Load database schema

In order to simplify the schema definition, we provide the example as listed below.
The example schema describes companies (Company), which have got employ-
ees (Employee), which are persons (Person) and cars (Car). The cars of a com-
pany might be assigned to be used by one or more employees of the company.

Before loading the schema one may change the dictionary folder, which refers to
the position where you did create your Sample development database (dictionary).
When the definition file Sample.odl had not been copied to the OSI folder in the
project folder, the sample might be copied from this page or from the documenta-
tion folder. More explanations for the schema definition you will find in the topics
below (Sample schema notes).

In order to load the schema, simply call ODL.sh (LINUX) or ODL.cmd (Windows).
In order to update the schema, one may extend the ODL script and reload it. A
more comfortable way, however, is using ODE tools (ClassEditor) as being de-
scribed in Quick Starter Guide/9 Steps to develop a GUI application/View or update
schema definitions.

When using the generated defaults, the dictionary will be created in the project's
root directory (e.g. ~/Sample/Sample.dev). In order to place it somewhere else, the
DICTIONARY path in the ODL script (osi/Sample.odl) has to be changed.

DICTIONARY = 'Sample.dev'; // sample resources

UPDATE SCHEMA Sample {

// Car class definition
 CLASS Car PERSISTENT (KEY IDENT_KEY pk(cid);) {
 ATTRIBUTE {
 CHAR(10) cid;
 STRING(40) type;
 INT(2) number_of_seats = 4;
 };

 RELATIONSHIP {
 Company SECONDARY company INVERSE cars;
 SET<Employee> SECONDARY users ORDERED_BY (pk UNIQUE)
INVERSE used_cars;
 };
 };

// Person class definition
 CLASS Person PERSISTENT
 (KEY { IDENT_KEY pk (pid); sk (name); };
 EXTENT MULTIPLE_KEY owner Persons ORDERED_BY (pk UNIQUE NOT_EMPTY,
sk);)
 {
 ENUM Sex {
 male = 1,
 female = 2,
 undefined = 0

- 30 -

 };

 STRUCT Address PERSISTENT {
 STRING(6) zip;
 STRING(40) city;
 STRING(80) street;
 STRING(6) number;
 };
 ATTRIBUTE {
 NOT_EMPTY CHAR(16) pid;
 STRING(40) name;
 STRING(40) first_name[3];
 DATE birth_date;
 Sex sex = male;
 bool married = false;
 INT(10,2) income;
 TRANSIENT INT(3) age SOURCE((Date() - birth_date)/365.25);
 };
 REFERENCE Address location;
 REFERENCE STRING notes[4000];

 RELATIONSHIP {
 SET<Person> children BASED_ON Persons
 INVERSE parents;
 Person SECONDARY parents[2] BASED_ON Persons
 INVERSE children;
 Employee SECONDARY employee INVERSE person;
 };
 };

// Employee class definition
 CLASS Employee PERSISTENT : Person person BASED_ON Person::Persons
INVERSE employee
 (KEY IDENT_KEY pk(pid);)
 {
// ATTRIBUTE INT(10,2) income;

 RELATIONSHIP {
 Company SECONDARY company BASED_ON Company
 ORDERED_BY (pk UNIQUE)
 INVERSE employees;
 Car NO_CREATE used_cars[2] BASED_ON .company.cars
 ORDERED_BY (pk UNIQUE)
 INVERSE users;
 };
 };

// Company class definition
 CLASS Company PERSISTENT (KEY IDENT_KEY pk(name);) {
 ATTRIBUTE NOT_EMPTY STRING(200) name;

 RELATIONSHIP {
 SET<Employee> employees BASED_ON Employee
 ORDERED_BY (pk UNIQUE)
 INVERSE company;
 SET<Car> OWNER cars ORDERED_BY (pk UNIQUE)
 INVERSE company;
 };

- 31 -

 };

// Global extent definition
 EXTENT Company UPDATE MULTIPLE_KEY OWNER Company
 ORDERED_BY (pk UNIQUE NOT_EMPTY);
 EXTENT Employee UPDATE MULTIPLE_KEY OWNER Employee
 ORDERED_BY (pk UNIQUE NOT_EMPTY);
};

Notes: Schema loading should work without problems when the Sample project
had been created. When creating another project, one may have to update the
ODL.sh or ODL.cmd file in order to set proper location for the schema file. More-
over, one has to make sure, that the dictionary path in the .odl file is correct.

3.2.1 Load Schema (Linux)

Typically, the dictionary is stored in the project root (e.g. ~/Sample). In the exam-
ple, the script file has been stored in a sub folder OSI (~/Sample/osi/Sam-
ple.odl). When generating another project than Sample, an appropriate ODL
script file has to be provided.

~/odaba/Sample$./ODL.sh

This procedure is properly initialized when generating the Sample project but has
to be adapted to specific requirements when generating other projects. The op-
tions -R and -C is suggested in order to check the schema after being imported
and mark data types as checked and ready.

The load protocol is written to console as shown in the example below.

2010-09-23 21:02:33 - Running /usr/local/lib/odaba/tools/ODL with:
 ini-file: Sample.odl
 script file:
 Options used: -C: -R:
New database created at '/home/my_user/odaba/Sample/Sample.dev'
... checking all persistent structures
 Address ... checking structure
 Address...checked successfully
 Car ... checking structure
 Car...checked successfully
 Company ... checking structure
 Company...checked successfully
 Employee ... checking structure
 Employee...checked successfully
 Person ... checking structure
 Person...checked successfully
... checking all extent definitions
 Company ... checking extent
 Company... checked successfully
 Employee ... checking extent
 Employee... checked successfully
 Persons ... checking extent

- 32 -

 Persons... checked successfully
... setting version number for all structures

Notes: When there is no odaba.ini stored in the ODABA system folder or when it
contains an invalid reference to the ode.sys database, instead of the message

New database created at 'Sample.dev'

the following message will appear:

Undescribed Error : 98 in LDBHandle::Open
(Sample/Sample.dev,InputArea,ik_name,,,)

which can be ignored. When the input file contains invalid characters or one has
edited it, then sometimes errors like

symbol 'sc_element' accepts empty expressions
SOS Error :
Error at line 2, column 15
No match for 'schema_dcl' at: ... Sample {
in: sc_definition
in: sc_element
in: sc_elements
in: ODL

occur. Please make sure that the input script is valid.

3.2.2 Load Schema (Windows)

Typically, the dictionary is stored in the project root (e.g. E:\Sample). In the ex-
ample, the script file has been stored in a sub folder OSI (E:\Sample\osi\Sam-
ple.osi).

...>E:\Sample\ODL.cmd

This procedure is properly initialized when generating the Sample project but has
to be adapted to specific requirements when generating other projects. The op-
tions -R and -C is suggested in order to check the schema after being imported
and mark data types as checked and ready.

The load protocol is written to console as shown in the example below.

- 33 -

2010-09-23 21:02:33 - Running C:\Programs\odaba\ODL.exe with:
 ini-file: E:\Sample\osi\Sample.odl
 script file:
 Options used: -C: -R:
New database created at 'e:/Sample/Sample.dev'
... checking all persistent structures
 Address ... checking structure
 Address...checked successfully
 Car ... checking structure
 Car...checked successfully
 Company ... checking structure
 Company...checked successfully
 Employee ... checking structure
 Employee...checked successfully
 Person ... checking structure
 Person...checked successfully
... checking all extent definitions
 Company ... checking extent
 Company... checked successfully
 Employee ... checking extent
 Employee... checked successfully
 Persons ... checking extent
 Persons... checked successfully
... setting version number for all structures

Notes: When there is no odaba.ini stored in the ODABA system folder or when it
contains an invalid reference to the ode.sys database, instead of the message

New database created at 'e:/Sample/Sample.dev'

the following two messages will appear:

Undescribed Error : 98 in LDBHandle::Open
(e:/Sample/Sample.dev,InputArea,ik_name,,,)

which can be ignored.

When the input file contains invalid characters after being edited, errors like

symbol 'sc_element' accepts empty expressions
SOS Error :
Error at line 2, column 15
No match for 'schema_dcl' at: ... Sample {
in: sc_definition
in: sc_element
in: sc_elements
in: ODL

may occur. Please make sure that the input script is valid.

- 34 -

3.2.3 ODL Script comments

The sample schema demonstrates different ways of defining schema elements. In
order to define persistent type information, complex data types have to defined as
CLASS rather than as STRUCT. In order to distinguish better between keywords
and names, we used capital letters for keywords in the scripts. Keywords can be
written in lower and upper case letters. More details, you will find in OSI - ODABA
Script Interface.

The example defines three global and one local complex data type. Person, Car
and Company are global types. The sequence of definition is not important since
the semantic check is performed after loading the schema updates for the com-
plete schema stored in the dictionary.

Dictionary location

The dictionary location might be passed as parameter when calling ODL or within
the script. Usually, it is more flexible passing the dictionary location as parameter
when calling ODL. For the example, we used the internal specification for the dic-
tionary as shown below.

In order to get proper error messages, it is suggested to call ODL with an ini-file,
that refers to the system dictionary in the system section. Then, one may refer to
the dictionary in the script of by defining a DATASOURCE in the script, which refers
to a section in the ini-file.

DICTIONARY = 'Sample/Sample.dev'; // sample resources

- 35 -

3.3 View or update schema definitions

After loading the schema successfully, one may start the ClassEditor in order to
view the result or update the schema, but one may also skip this step and continue
immediately with creating test data. After starting the ClassEditor the first time, you
are prompted to initialize the resource project.

For first test it is suggested to use OSI interface (IFT_odabaOSI), which is the de-
fault setting, when the project has been initialized as OSI project before. We sug-
gest using OSI interface in order to build fast prototypes. Since OSI provides a
script interface, compiling and linking is not necessary. After clicking OK, ClassEdi-
tor resources will be initialized which may take up to 1 minute. After a while, the
ClassEditor opens and displays project classes. The default view shows the class
view, i.e. the three persistent sample classes. In order to view structure (complex
data type) properties, Sample/Structures has to be expanded in the tree.

- 36 -

Structure details are displayed in the right side property window. After selecting a
structure in the tree, general structure properties are displayed in the property win-
dow on the right side. In order to view structure properties, you click the Members
tab on top. Structure properties are grouped by type which can be selected by tabs
marked on top in the picture above. On bottom, there one might change between
detail and list view. The list view also provides a complete member list with all
structure properties.

The class view (tree bottom), allows viewing/updating class extensions of the
structure definition as extents, local structures, enumerations etc.

After updating structure definitions, the checked and ready state for the definition
will be reset. In order to check the structure definition one may click the check but-
ton in the structure window tool bar. In order to prepare the project for production,
you have to call Database/DB Version/Production Phase from the application
menu.

3.3.1 Initializing the ClassEditor (Linux)

ODE tools like ClassEditor require a configuration file as ode.ini, which has been
generated to the project's root directory (~/Sample/ode.ini). This is referenced
in the ClassEditor.sh command in the project root directory:

~/odaba/Sample$./ClassEditor.sh

- 37 -

3.3.2 Initializing the ClassEditor (Windows)

ODE tools like ClassEditor require a configuration file as ode.ini, which has been
generated to the project's root directory (E:\Sample\ode.ini). This is refer-
enced in the ClassEditor.sh command in the project root directory:

...>E:\Sample\ClassEditor.cmd

- 38 -

3.4 Create test data

For creating test data for the sample database, one may use the OSI script as
shown below. Comment on the example you will find in the subtopic OSI Script
comments. After creating the Sample project, one may simply call OSI.sh
(LINUX) or OSI.cmd (Windows), which have been generated to the project direc-
tory. When generating other projects, the generated scripts have to be revised in
order to check file location for the called .osi script file.

Dictionary and database are expected in the project root directory. Otherwise,
DICTIONARY and DATABASE have to be updated in the script file.

When calling the script, a new database will be created at the location defined in
DATABASE in the script. Before rerunning the script, the database should be
deleted, since the script is not prepared for being called repeatedly.

In order to change the amount of data to be created, one may modify the script
slightly (see also comments). The number of persons to be created can be passed
as parameter in the CreatePersons(person_count) function call. The default
is 1000.

The dictionary must exist at the location specified in the script file for DICTIO-
NARY. The script contains several Message() calls that write protocol information
to the console. The protocols listed in the Linux and Windows specification are the
output from the tests running on our test machine.

DICTIONARY='Sample.dev';
DATABASE='Sample.dat';

bool main () {
VARIABLES
 global int comp_count = 5;
PROCESS
 CreateCompanies();
 CreatePersons();
 InitCollections();
 AssignChildren();
}

void CreateCompanies () {
VARIABLES
 int comp_number = 0;
 int count = 0;
 int car_counts[5];
 string key;
 SET<Company> &companies = Company;
 SET<Car> &cars = companies.cars;
PROCESS
// create 5 companies
Message("Starting company transaction: " + (string)Time());
companies.objectSpace.beginTransaction();
 SystemClass::RandomNumbers(car_counts,20); // initialize number of
cars per company between 0 and

- 39 -

 companies.insert("My company");
 companies.insert("Your company");
 companies.insert("NO company");
 companies.insert("Any company");
 companies.insert("Best company");
 comp_count = companies.count;
 while (comp_number < comp_count) {
 companies.get(comp_number);
 count = 0;
 while (count < car_counts[comp_number]) {
 key = 'C' + (string)comp_number + '-' + (string)(++count);
 cars.insert(key);
 }
 ++comp_number; // only prefix
operators are supported
 }

Message("Storing company transaction: " + (string)Time());
companies.objectSpace.commitTransaction;
Message("Stopping company transaction: " + (string)Time());
}

void CreatePersons (int person_count = 1000) {
VARIABLES
 int count = 0;
 SET<Person> &persons = Person::Persons;
PROCESS
Message("Starting person transaction: " + (string)Time());
persons.objectSpace.beginTransaction();

 while (count < person_count)
 persons.insert('P' + (string)(++count)).SetAttributes();

Message("Storing person transaction: " + (string)Time());
persons.objectSpace.commitTransaction;
Message("Stopping persons transaction: " + (string)Time());
}

void Person::SetAttributes () {
VARIABLES
 int count = 0;
 int number;
 int comp_number = 0;
 int first_name_letters[10];
 int last_name_letters[5];
 int years;
 int months;
 int days;
 string upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 string lower = "abcdefghijklmnopqrstuvwxyz";
PROCESS
// initialize gender
 SystemClass::RandomNumbers(number,2);
 sex = number + 1; // 1: male, 2:female

// initialize birth date
 SystemClass::RandomNumbers(years,100);
 SystemClass::RandomNumbers(months,12);

- 40 -

 SystemClass::RandomNumbers(days,28);
 birth_date = (string)(years + 1910) + '-' + (string)(months + 1) +
'-' + (string)(days + 1);

// initialize family state
 SystemClass::RandomNumbers(number,2);
 if (age >= 18) // initial value is false
 married = number;

// init first first name
 count = 0;
 SystemClass::RandomNumbers(first_name_letters,26);
 first_name[0] += upper.subString(first_name_letters[0],1);
 while (++count < 10) // number of random letters in
first_name_letters
 first_name[0] += lower.subString(first_name_letters[count],1);

// init last name
 count = 0;
 SystemClass::RandomNumbers(last_name_letters,26);
 name += upper.subString(last_name_letters[0],1);
// while (++count < 5) // number of random letters in
last_name_letters
 while (++count < last_name_letters.propertyDefinition.collectionSize
) // number of random letters in last_name_letters
 name += lower.subString(last_name_letters[count],1);
 save();

// initialize employee
 if (age >= 16 && age < 65) {
 RandomNumbers(comp_number,comp_count);
 RandomNumbers(number,9500);
 Company.get(comp_number).employees.insert(pid).{ income = number
+ 500; };
 }
}

void InitCollections () {
VARIABLES
 global set<Person> &f20 &= Person::Persons;
 global set<Person> &f40 &= Person::Persons;
 global set<Person> &f60 &= Person::Persons;
 global set<Person> &f80 &= Person::Persons;
 global set<Person> &f100 &= Person::Persons;
 global set<Person> &m20 &= Person::Persons;
 global set<Person> &m40 &= Person::Persons;
 global set<Person> &m60 &= Person::Persons;
 global set<Person> &m80 &= Person::Persons;
 global set<Person> &m100 &= Person::Persons;
 global set<Person> &c10 &= Person::Persons;
 global set<Person> &c30 &= Person::Persons;
 global set<Person> &c50 &= Person::Persons;
 global set<Person> &c70 &= Person::Persons;
PROCESS
// set filter for global male and feemale collections by age
 f20.filter('age <= 20 && sex == "female"');
 f40.filter('age > 20 && age <= 40 && sex == "female"');
 f60.filter('age > 40 && age <= 60 && sex == "female"');

- 41 -

 f80.filter('age > 60 && age <= 80 && sex == "female"');
 f100.filter('age > 80 && age <= 100 && sex == "female"');
 m20.filter('age > 20 && sex == "male"');
 m40.filter('age > 20 && age <= 40 && sex == "male"');
 m60.filter('age > 40 && age <= 60 && sex == "male"');
 m80.filter('age > 60 && age <= 80 && sex == "male"');
 m100.filter('age > 80 && age <= 100 && sex == "male"');
 c10.filter('age <= 10');
 c10.first(); // locate first
 c30.filter('age > 10 && age <= 30');
 c30.first(); // locate first
 c50.filter('age > 30 && age <= 50');
 c50.first(); // locate first
 c70.filter('age > 50 && age <= 70');
 c70.first(); // locate first
}

bool AssignChildren () {
VARIABLES
 set<Person> &father;
 int age_group = 100;
PROCESS
Message("Create child/parent relations: " + (string)Time());

 while (age_group > 20) {
 switch (age_group) {
 case 100 : father &= f100;
 break;
 case 80 : father &= f80;
 break;
 case 60 : father &= f60;
 break;
 case 40 : father &= f40;
 break;
 }
 if (father.next()) {
 father.AssignChild(age_group);
 } else
 age_group -= 20;
 }
Message("Created: " + (string)Time());
}

bool Person::AssignChild (int age_group) {
VARIABLES
 set<Person> &mother;
 set<Person> &child;
 int child_count;
 int cage_group = 100;
PROCESS

 SystemClass::RandomNumbers(child_count,7);
 if (!child_count)
 leave;

 while (age_group > 20) {
 switch (age_group) {
 case 100 : mother &= m100;

- 42 -

 break;
 case 80 : mother &= m80;
 break;
 case 60 : mother &= m60;
 break;
 case 40 : mother &= m40;
 break;
 }
 if (!mother.next) {
 age_group -= 20;
 } else
 break;
 }
 while (child_count > 0 && age_group >= 40) {
 --child_count;
 switch (age_group) {
 case 100: child &= c70;
 break;
 case 80 : child &= c50;
 break;
 case 60 : child &= c30;
 break;
 case 40 : child &= c10;
 break;
 }
 if (!child.located) {
 age_group -= 20;
 continue;
 } else {
 children.insertReference(child);
 if (mother.located)
 mother.children.insertReference(child);
 child.next();
 }
 }
}

3.4.1 Create test data (Linux)

Typically, the dictionary is stored in the project root (e.g. ~/Sample). In the exam-
ple, the script file has been stored in a sub directory osi (~/Sample/osi/Sam-
ple.osi). When generating another project than Sample, an appropriate OSI
script file has to be provided.

~/odaba/Sample$./OSI.sh

This procedure is properly initialized when generating the Sample project but has
to be adapted to specific requirements when generating other projects.

The load protocol is written to console as shown in the example below.

- 43 -

2010-10-01 16:23:17 - Running /usr/local/lib/odaba/tools/OSI with:
 ini-file: Sample.osi
 script file:
New database created at '/home/testuser/odaba/Sample.dat'
Starting company transaction: 19:42:08.51
Storing company transaction: 19:42:08.79
Stopping company transaction: 19:42:08.84
Starting person transaction: 19:42:08.87
Storing person transaction: 19:42:24.92
Stopping persons transaction: 19:42:25.39
Create child/parent relations: 19:42:25.54
Created: 19:42:41.17

Notes: When there is no odaba.ini stored in the ODABA system folder or when it
contains an invalid reference to the ode.sys database, instead of the message

New database created at 'Sample.dat'

the following message will appear:

Undescribed Error : 98 in LDBHandle::Open (Sample.dat,InputArea,ik_name,,,)

which may be ignored.

Due to random name generation some errors may appear on console and/or in the
error log file as:

Error 64 in Property::insert (Error in Field: Company)
Error 152 in Property::insertReference (Error in Field: children of Struc-
ture: Person)

this only means that the script created two persons with the same name and the
database rejected the data. Nevertheless, one may safely continue with the next
steps.

3.4.2 Create test data (Windows)

Typically, the dictionary is stored in the project root (e.g. E:\Sample). In the exam-
ple, the script file has been stored in a sub directory OSI (E:\Sample\osi\Sam-
ple.osi). When generating another project than Sample, an appropriate OSI
script file has to be provided.

...>E:\odaba\Sample\OSI.cmd

This procedure is properly initialized when generating the Sample project but has
to be adapted to specific requirements when generating other projects.

The load protocol is written to console as shown in the example below.

- 44 -

2010-10-01 16:23:17 - Running C:\Programs\odaba\OSI.exe with:
 ini-file: E:\Sample\osi\Sample.osi
 script file:
New database created at 'E:\Sample\Sample.dat'
Starting company transaction: 19:42:08.51
Storing company transaction: 19:42:08.79
Stopping company transaction: 19:42:08.84
Starting person transaction: 19:42:08.87
Storing person transaction: 19:42:24.92
Stopping persons transaction: 19:42:25.39
Create child/parent relations: 19:42:25.54
Created: 19:42:41.17

Notes: When there is no odaba.ini stored in the ODABA system folder or when it
contains an invalid reference to the ode.sys database, instead of the message

New database created at 'e:/Sample/Sample.dat'

the following message will appear:

Undescribed Error : 98 in LDBHandle::Open (Sample.dat,InputArea,ik_name,,,)

which may be ignored.

Due to random name generation some errors may appear on console and/or in the
error log file as:

Error 64 in Property::insert (Error in Field: Company)
Error 152 in Property::insertReference (Error in Field: children of Struc-
ture: Person)

This only means that the script created two persons with the same name and the
database rejected the data. Nevertheless, one may safely continue with the next
steps.

- 45 -

3.4.3 OSI Script comments

The OSI script example creates test data for the sample database. This is, per-
haps, not the most typical use case, but it also demonstrates the principle use of
OSI scripts. For an OSI script, the database is the memory, i.e. no queries are
necessary, since collections and instances are just there. On the other hand, OSI
behaves like a normal programming language (similar to C# or Java). Thus, data-
base access becomes very flexible and is rather familiar to programmers. More
details, you will find in OSI - ODABA Script Interface in the ODABA Online Docu-
mentation.

Data source

Static or global OSI scripts require a data source, which defines the database the
script is working on. In the example, the data source is defined in the script file by
defining the path for DICTIONARY and DATABASE. One might also define the data
source in an ini-file or data catalog and referring to the data source name by the
DATASOURCE keyword.

DICTIONARY='Sample/Sample.dev';
DATABASE='Sample/Sample.dat';

Notes: On Windows you have no common place for the Databases and Dictionar-
ies. In contrast Linux provides a Directory in /var/lib/odaba. Therefore you have to
change the provided examples or consequently ignore the presumption and write
the ini-files for yourself.

- 46 -

3.5 Evaluate test data

Some examples for accessing data in an ODABA data base via OShell commands
and embedded OSI scripts have been provided within the OShell script shown be-
low in the example. The first lines in the script contain OShell script statements for
producing simple statistics. The second part contains embedded OSI script in or-
der to provide more complex statistics. Detailed comments to the example you will
find in OShell Script comments.

After creating the Sample project, one may simply call OShell.sh (LINUX) or OS-
hell.cmd (Windows), which have been generated to the project's root directory.
When generating other projects, the generated scripts have to be revised in order
to check file location for the called .osh script file. OShell allows opening data
sources defined in a data catalog or in a configuration file passed to the OShell
function. The generated configuration file ode.ini contains data source sections for
the resource database (e.g. [Sample_dev]) and the application database (e.g.
[Sample_dat]) prefixed with the name of the project created. By default, dictionary
and database are expected in the project's root directory. Otherwise, data sources
in the ode.ini file have to be updated.

After processing the command passed in the script file, the OShell remains open
and the data source is still active. The data collection currently selected is Com-
pany. You may enter further OShell commands or q[uit] in order to leave OS-
hell.

cd Sample_dat

cc Company
li
fa p cars.count
fa p employees.count

cc /Employee
count
sf "sex == 'male'"
relativeCount

cc '/Person::Persons'
count
osi do
VARIABLES
 int child_count;
 int distance = 0, dist = 0;
 int min_dist = 100, max_dist = 0;
 int dcount = 0;
PROCESS
 filter('age > 65 && employee.count == 0');
 Message('Persons probably retired (over 65 and not employed): ' +
relativeCount);

 top();
 while (next())

- 47 -

 child_count += children.count;
 Message('Total number of children: ' + child_count);

 filter("");
 top();
 while (next())
 while (children.next()) {
 dist = age-children.age;
 if (min_dist >= dist) min_dist = dist;
 if (max_dist <= dist) max_dist = dist;
 distance += age-children.age;
 ++dcount;
 }
 Message('Average age distance between children and parents: ' +
distance/dcount);
 Message(' Minimum/maximum distance is: ' + (string)min_dist + '/' +
(string)max_dist);
end

cc /Company
osi do
VARIABLES
 int(10,2) sum_income;
PROCESS
 top();
 while (next()) {
 sum_income = 0;
 while (employees.next())
 sum_income += employees.income;
 Message('Total income for "' + name + '" is: ' + sum_income);
 }
end

- 48 -

3.5.1 Evaluate test data (Linux)

OShell is called with a configuration file ode.ini stored in the project's root direc-
tory (~/Sample/ode.ini). When the Sample project had been generated, the osi
sub directory contains an oshell script Sample.osh (~/Sample/osi/Sam-
ple.osh), which may be called from the OShell:

~/odaba/Sample$./OShell.sh

ODABA>call 'osi/Sample.osh'

The load protocol is written to console as shown in the example below.

12-11-08 - Running /usr/local/lib/odaba/tools/OShell with:
 ini-file: ode.ini
 script file:
ODABA>call 'osi/Sample.osh'
 Any company
 Best company
 My company
 NO company
 Your company
 cars.count=9
 cars.count=5
 cars.count=15
 cars.count=4
 cars.count=13
 employees.count=98
 employees.count=110
 employees.count=96
 employees.count=77
 employees.count=81
 count returns: 462
 relativeCount returns: 241
 count returns: 1000
Persons probably retired (over 65 and not employed): 400
Total number of children: 1051
Average age distance between children and parents: 41.318873668188736
 Minimum/maximum distance is: 11/69
Total income for "Any company" is: 436170.00
Total income for "Best company" is: 543902.00
Total income for "My company" is: 485852.00
Total income for "NO company" is: 369282.00
Total income for "Your company" is: 371598.00
Sample_dat/Company>

Notes: Data has been generated randomly, i.e. figures may differ.

- 49 -

3.5.2 Evaluate test data (Windows)

OShell is called with a configuration file ode.ini stored in the project's root direc-
tory (e.g. E:\Sample\ode.ini). When the Sample project had been generated,
the osi sub directory contains an oshell script Sample.osh
(E:\Sample\osi\Sample.osh), which may be called from the OShell:

...>E:\odaba\Sample\OShell.cmd

ODABA>call 'osi/Sample.osh'

The load protocol is written to console as shown in the example below.

12-11-08 - Running C:\Programs\odaba\OShell.exe with:
 ini-file: ode.ini
 script file:
ODABA>call 'osi/Sample.osh'
 Any company
 Best company
 My company
 NO company
 Your company
 cars.count=9
 cars.count=5
 cars.count=15
 cars.count=4
 cars.count=13
 employees.count=98
 employees.count=110
 employees.count=96
 employees.count=77
 employees.count=81
 count returns: 462
 relativeCount returns: 241
 count returns: 1000
Persons probably retired (over 65 and not employed): 400
Total number of children: 1051
Average age distance between children and parents: 41.318873668188736
 Minimum/maximum distance is: 11/69
Total income for "Any company" is: 436170.00
Total income for "Best company" is: 543902.00
Total income for "My company" is: 485852.00
Total income for "NO company" is: 369282.00
Total income for "Your company" is: 371598.00
Sample_dat/Company>

Notes: Data has been generated randomly, i.e. figures may differ.

- 50 -

3.5.3 OShell Script comments

The OShell script in the example demonstrates some typical features. Besides ele-
mentary script commands as changing data sources (cd) or data collections (cc),
OShell supports embedded OSI scripts. When you enter script data directly via
console, blocks (beginning with .. .do or ... begin) are processed only after
terminating the block with an end command. More details one may find in Data-
base Utilities.

Selecting data source and collection

The first command (cd) selects the data source (Sample) as being defined as
section in the ini-file. Thus, one may switch between different data sources by
defining different data sources in the ini-file. After the data source has been
opened, a collection (extent) is selected (cc). After selecting a data collection, one
may browse data in the data collection or change to subsets (references or rela-
tionships).

cd Sample
cc Company

- 51 -

3.6 Design a GUI application

After importing and testing the database schema, a GUI application can be build in
order to access the test data via a GUI example. The following steps demonstrate
the typical activities necessary for creating and running an ODABA GUI applica-
tion.

Notes: The GUI framework is a bit unstable and tools sometimes abort. Usually,
what you have done so far is already saved and one may simply restart the De-
signer and continue.

3.6.1 Starting Designer

In order to start the Designer, the procedure Designer.sh (LINUX) or Design-
er.cmd (Windows) generated by CreateProject may be called from the
project's root directory.

When starting ODE tools the first time, they will load several resources from the
system resource database, which might be used for development but also updated
by the user. Thus, starting the Designer the first time, you will be asked to initialize
a project.

How to start the Designer under Linux or Windows you will find in the following
subtopic.

When the Designer starts up, it requires to initialize a project. The project name,
e.g. Sample, is usually used for the resource project which is identical with the
schema name when loading a database scheme from an ODL file. In order to ini -
tialize a GUI context interface project, one should define a name different from the
resource project (e.g. SampleGUI).

When ClassEditor resources have not yet been initialized (by previous call of
ClassEditor), first, ClassEditor resources will be initialized. For initializing ClassEd-
itor resources you are prompted to initialize the resource project.

- 52 -

For first test it is suggested to use OSI interface (IFT_odabaOSI), which is the de-
fault setting.

In order to create a GUI application, one should create a GUI context interface
project for implementing application rules (project type PIT_GUIContextInter-
faceDLL). This allows providing actions and application rules implemented as
event handlers. For creating a GUI context class interface, the following settings
should be selected:

Instead of using the the C++ interface type (IFT_odabaInterfaceCPP), for first test it
is suggested to use OSI interface (IFT_odabaOSI), which is the default setting,
when project resources have been initialized as OSI project before. We suggest
using OSI in order to build fast prototypes. Since OSI provides a script interface,

- 53 -

compiling and linking is not necessary. Later one may change the interface type in
the project settings in order to change OSI classes to C++ or C# classes. This
might become necessary in order to increase performance, e.g. when handling
events on row level for large lists or tables (doBeforeDataSet()).

The build system (C++ and C# only) one may select in the Build-ID drop list. vs is
preselected when compiling with MS Visual Studio compiler. gcc (GNU compiler)
is the suggested build environment for Linux applications. The build environment
might be changed later in the project.

After confirming the settings (by clicking OK) it will take some time (up to two or
three minutes) until the project has been initialized as GUI development project.
Several Designer resources are copied from the system database in order to sup-
port application design.

Two movable docking lists shown on left side provide direct access to main design
resources (GUI classes and controls, and actions), which might be tabbed or ar-
ranged below each other. The Designer opens with the class view. One may
change between Design, Properties and Context Classes view by selecting the
corresponding tab on the bottom of the work area. Below the work area, an output
area will be opened in order to show process messages.

- 54 -

On the left side, the Designer shows two navigation trees. In order to design win-
dows or controls, the class tree should be used. Event actions combining actions
with events are accessible via the action tree. More design resources are provided
via the the Options menu in the main menu.

The three tabs below the work area allow switching between different views. The
Design view will be activated, when selecting a control in the class tree for design.
The Properties view displays properties of the currently selected entry in the class
or action tree. When a window, control or field that is associated with a context
class has been selected in the class tree, the Context Class view shows the imple-
mented handlers and actions in the associated context class.

3.6.1.1 Calling Designer (Linux)

ODE tools like Designer require a configuration file as ode.ini, which has been
generated to the project's root directory (~/Sample/ode.ini). This is referenced
in the Designer.sh command in the project root directory:

~/odaba/Sample$./Designer.sh

3.6.1.2 Calling Designer (Windows)

ODE tools like Designer require a configuration file as ode.ini, which has been
generated to the project's root directory (E:\Sample\ode.ini). This is refer-
enced in the Designer.sh command in the project root directory:

...>E:\Sample\Designer.cmd

3.6.2 Create project resource

First, an application or project should be defined. In the Designer, a project refers
to an executable GUI application. In order to edit project definitions, click the
Browse/edit project definitions button in the designer toolbar. When initializing
Designer resources, a Main project has already been created and might be used.
A new project can be created by clicking the Create button in the project dialog
toolbar.

Check the class and the window reference in the project definition, which refers to
the project window to be called when starting up the project. In the example, this is
the window Main in class Main (Main::Main). The Data source type is typically
set to user-defined.

- 55 -

Now, one may generate external resources for calling the application. Therefore,
click the Generate project files button in the project dialog toolbar (titled "Create
ini- and command file" in the picture above). The application configuration file
(here Main.ini) and a command file (Main.sh for LINUX or Main.cmd for Win-
dows) are written to the project's root directory (see also messages in the output
area.).

Additional details about defining project resources are described in Project re-
source definition.

Notes: In order to generate project resources, a project must have been selected
in the project list (Main). When no project is selected, nothing will happen when
pressing the "create ini- and command file" button.

- 56 -

3.6.3 Initialize project window from design pattern

The ODABA Designer provides several design patterns in order to standardize
and simplify application design. Design patterns can be selected from a list, which
pops up when selecting Initialize from the context menu after selecting the design
class to be initialized. Typically, one starts with designing the project window refer-
enced in the project defined before (e.g. Main window in class Main).

When the pattern selection dialog pops up, one may select one or more class pat-
terns for initializing. Standard design pattern classes start with _TPL_ and can be
designed as any other class in order to provide standard design rules for an appli -
cation.

In order to initialize the main application window, one should select _TPL_TreePro-
ject from the pattern list, which initializes an application with a main tree on the left
side and a dynamic work area on the right side. In order to select the right pattern,
one may select a pattern and click the Show button, which displays the current pat-
tern design. More information about how to use the pattern one may get when
clicking the About button.

After selecting the pattern(s) that should be used for the selected design class by
activating the check box(es) in the list one may click Apply in order to initialize your
class. This may take some seconds. After initializing, Windows and Controls shown
after expanding the selected class should have become expandable. When this is
not the case, you should refresh the class tree explicitly (context menu Refresh).
Since the tree project template fits to the Sample project data model, one may now
call the generated application start procedure (Main.sh or Main.cmd) in order to
view Sample data in the GUI application, supposed, that OSI has been selected as
default application interface language.

In the next step, one may expand the Windows and Controls region in order to
start windows and control design (see also Dialog design and Control design).

Notes: The tree project template requires that design classes for object types dis-
played in the tree are initialized later with the _TPL_VirtualTab template.

- 57 -

3.6.4 Standard application elements

The standard application that has been initialized from the _TPL_TreeProject
pattern can be considered as a proposal. It contains several elements, which one
may not want. In this case, they can be simply removed.

After selecting the Main win-
dow in the class tree
(Main/Windows/Main), one
may call Test window from
the context menu in order to
get a first impression how
your application looks like.
The application consists of
following elements, which
might be removed or up-
dated:

• Application Menu
• Application toolbar
• Application area

The application area contains the

• Application tree (left)
• output or message area (bottom)
• workspace area (right)

The sample contains two tree controls arranged in a tab
(Main::application_trees). In the test mode one may check the design ele-
ments (switching tabs, resizing etc.), but you cannot enter data. In order to access
data, data sources assigned to controls have to be set.

Controls in a window or control are referenced via Fields, which provide context
specific information for displaying the control (position in the parent control, size,
texts etc). Moreover, Fields combine the data source with a control, that displays
the data. Fields and other elements defined within a control do have an Auto-open
property, which allows to switch off an element temporarily.

- 58 -

In order to deactivate, e.g. the second tab, you switch to the Properties view
(down tab), select the field tree_common in control application trees and deacti-
vate the Auto-open check box (right). When you test the application again (Test
window), the tree area shows only one tabs.

Notes: One should never call Design for the Main window (Main/Windows/Main)
or the main application control (Main/Windows/Main/main) since this may cause
strange side effects.

- 59 -

3.6.5 Defining data sources

The next step, usually is to assign data sources to fields and regions in the control.
In the example, the project tree should show two regions, for Person::Persons
and Company::Companies. In order update region data sources, one may select
the Main::project_tree control and select Regions on the right side property
window.

The data source defined in the template might not be correct. Since Persons is a
defined extent in Person, the data reference has to refer to a scoped name (as
shown above).

More details for defining data sources you will get in the property view when you
select one of the regions in the class tree on the left side.

Notes: After you have checked the data sources, you may test the application by
running it. The GUI framework provides sufficient functionality, that you will see al-
ready some data in the application (see Run the application).

- 60 -

3.6.6 Create new design classes

The Data types defined in the project object models are not yet visible as design
classes. In order to display data for the data types, complex data types have to be
added to the designer class list. In order to create design classes for existing data
types, one may select Insert from the class tree context menu. Then, a tree insert
dialog pops up.

Enter the data type name, check that ADK_Class is selected in the type tree be-
low the name field in the insert dialog and press OK. After creating the design
classes for Person, Employee, Car and Company, you should initialize those by
selecting the class and clicking Initialize in the class tree context menu (see Ini-
tialize design class). When the template selection window appears, you should
now select _TPL_VirtualTab for each class.

3.6.7 Virtual controls

Virtual controls are controls, that automatically pop up in the work area (right side
of the application) when selecting an entry in the application tree. The control to be
shown on the work area depends on the complex data type of the instance se-
lected in the tree. Thus, defining a virtual control in the work area (here
virtual_edit) will automatically look for virtual_edit controls in the class of
the selected instance and in its base classes.

- 61 -

By initializing the class with
the _TPL_VirtualTab tem-
plate, the preconditions for
implementing virtual tab con-
trols are given. The project
tree requires a virtual control
with the name
virtual_edit. The tem-
plate also initializes an Edit
window, which will be dis-
played when selecting edit
from the context menu in a
list or tree. The virtual edit
control refers to a
tools_edit control, which
provides a toolbar for the tab
control referenced below.
Even though the control is

rather complex, the only thing to do is to design three controls.

Each tab_edit controls contains a static area (e.g. Person::edit_static),
which will be displayed on each tab level. The first tab page shows the object's
properties (Person::edit_properties) and the second tab shows references
(Person::edit_references). In order to make data visible, those three con-
trols should be designed or removed. The tools_edit control also defines a win-
dow toolbar, which might be updated or removed. Some additional ...frame con-
trols have been added, which are necessary for technical reasons.

In order to disable elements (e.g. the edit_static control in the tab_edit con-
trol, you only need to switch off the Auto-open option after switching to the Prop-
erties view) (see also Standard application elements).

- 62 -

Notes: Unfortunately, this feature is not yet fully implemented, i.e. there is still a
small interface necessary. Thus, a context class has to be defined for the tree (in
this case cStdProjectTree, which implements a doAfterSelect() handler.
This handler still requires three lines of code in order to inform the work area about
the change in the tree selection. In the initialized database, there you will find the
cStdProjectTree context class, which provides a corresponding doAfterSe-
lect() handler.

- 63 -

3.6.8 Design a complex control

In order to design the edit_properties and edit_references control, one
may select the field edit_properties and Design from the context menu. Then,
the right side window changes to Design view and a 5 x 2 grid control will be dis-
played on the design area.

Then you change the class tree to Properties view (tab above the class tree) and
expand to Person/Attributes. Now, you drag the attributes to a grid cell in the de-
sign window and drop them there.

- 64 -

Essential control properties are size and grid dimensions (vertical and horizontal
cells). Those might be updated in the property view, but also directly here in the
design view in the property lists on the right side of the designer window, which
display relevant properties for designing controls, fields and buttons.

After you have dragged the attributes you want to display in the application, one
may change field properties in the property table right of the designer area, e.g.
set horizontal cells to 2 for the notes field.

- 65 -

Details about different design properties you will find in the Control Design refer-
ence guide (Reference documentation/Design objects/Control design). After
designing the edit_properties control, one may design the edit_refer-
ences control by dragging relationships and references to the control grid cells.

Now, one may repeat this procedure for Employee, Company and Car and your
application will allow viewing, creating and updating objects in the Sample data-
base.

Notes: When changing properties in the property window (right), changes become
visible after you have left the field you just edited.

- 66 -

3.7 Define application rules

Application rules are, typically, defined on control or field level. Since a control de-
fines common behavior for a GUI element, the field defines the behavior of a GUI
element in a certain context (form or window). Thus, one may associate a control
context class defining the behavior for the GUI element with a field, but also with a
control.

When a context is defined for the control referenced by the field, but also for the
field, the field context class will overload the control context class completely, i.e.
control context behavior will not be activated at all. In order to specialize the con-
trol context behavior in a field context class, one may define a field context class
which inherits from the control context class.

After implementing the handlers and functions required, the context class library
has to be created (see Create application rules library (context class library)),
except the class has been implemented as OSI class.

3.7.1 Create new context class

In order to associate a context class with a control or field the name of the context
class has to be set in the context class field in the control or field property window.

- 67 -

When associating an existing context class, you need just enter the name in the
context class field. In order to create a new context class, it is suggested to use
the associate button on the right side if the context lass field. After pressing the
button, a context class initialization dialog pops up:

Usually, values in the fields are set properly from the project definition and only the
name of the implementation class needs to be entered in the Impl.class field. In
order to associate an existing context class, one may select one from the drop list
or enter a new class name.

The base class, the context class inherits from is usually the ControlContext
class. In order to change the base class, one may select an existing context class
from the drop list, which, directly or indirectly, has to inherit from the Control con-
text class.

When creating a new context class, the class is initialized be creating default func-
tions depending on the programming language used (e.g. Create function, con-
structor and destructor). In order to avoid initializing the context class, the initialize
option has to be switched off.

- 68 -

3.7.2 Edit context class

In order to implement a GUI context class, one may change to the Context class
tab in the Designer or edit the class in the ClassEditor.

The function list displays the functions already implemented or generated. In order
to create new functions, one may use the context menu on the function list or the
create button in the class toolbar. When selecting the Create function menu item
from the toolbar menu (as shown in the picture above), a function initialization dia-
log pops up:

- 69 -

By default, event handler function type (FIT_EventHandler) is selected fot the con-
text function to be created. In this case, one may select one of the event handler
names defined in the drop list above. When changing the function implementation
type, the drop list disappears and an input field allows you entering your function
name. The Method type is selected according to the settings in the project. In or-
der to test new functionality, one may select OSI (MTT_OSIFunction) rather than
C++ or C#. When compiling the class, OSI functions are not be generated into the
class source file. Thus, one may test the new function immediately without compil-
ing the class and creating a new context library version. Later, you might change
the implementation type and create a C++ or C# function from the OSI function.

While creating the function it will be initialized according to the handler function
declaration or the function template selected from the Function template list. When
the same function has been implemented in a base class, the function will be ini-
tialized according to the function definition in the base class. In order to avoid ini-
tializing from base class functions, the Ignore base class option should be switched
on.

Notes: One might mix OSI with other programming languages as long as both are
strictly separated, i.e.as long as OSI functions do not call C++ or C# functions and
reverse. The only exceptions are actions called via executeFunction(), which
supports mixed processing.

3.7.3 [Create application rules library (context class li-
brary)]

The application that has been defined using the Designer has already imple-
mented some default application rules. Depending on the selected programming
language, application rules are provides as OSI, C++ or C# classes. When imple-
menting rules in C++ or C# classes, those have to be provided in a so-called appli-

- 70 -

cation context library. In order to create the context library, one has to compile the
SampleGUI context project, which is not necessary for OSI implementations.
Hence, the following topics might be skipped for OSI projects.

In order to create the application context library, the ClassEditor has to be started
(Windows: ClassEditor.cmd, Linux: ce Sample). There one may update the
application context interface, create external resources and build the application
context interface.

Notes: This step is necessary for C++ or C# projects, but not for OSI projects.

3.7.3.1 Update external resources

ODE generates external resources in order to call compiler and other services.
When project definition changes, you are usually prompted for updating external
resources. When the GUI context project is not yet selected after starting the
ClassEditor, one may select it from the project list (drop list above the class tree,
left side).

Normally, source code and header files have already been created in
Sample/SampleGUI/qlib and Sample/SampleGUI/h. When this is not the case,
one may generate sources and header files by clicking the appropriate menu
items.

- 71 -

Generate project definitions creates command files for compiling and linking
project resources. This is, usually, done automatically.

3.7.3.2 Compile application context classes

After creating external resources, one may compile the project by selecting the
"Compile all classes" action:

The compiler output will be displayed in the output area on the bottom of the
ClassEditor. Since output will be displayed when the process terminated, i.e. after
compiling all classes, it may take a while, until the message appears.

Another way for compiling the project is going straight to the
Sample/SampleGUI/bat folder, where you will find procedures for compiling and
linking the project (gcc for Linux and vs for Windows):

*_compileProject.bat

- 72 -

3.7.3.2.1 Create context library (Windows)

In order to create the context library in a Windows system make sure, that you
have activated compiler options. The procedures delivered are prepared for MS
Developer Studio 10. When you are using another compiler version, you need to
update the command files in the odaba\bat folder.

Now, one may call compile and link procedures:

vs_compileProject.bat

from the Sample\SampleGUI\bat folder.

3.7.3.2.2 Create context library (Linux)

In order to create the context library in a Linux system make sure, that you have
installed a compiler and the -dev packages of ODABA. The procedures delivered
are prepared for a system-installed gcc (g++). When you are using another com-
piler or you want to change something in the defaults, you need to update the
command files in the ~/odaba/projects/bat folder. You can reset the changes by
removing the ~/odaba/projects/bat folder and restarting the ClassEditor.

Now, one may call compile and link procedures:

gcc_compileProject.bat

from the ~/odaba/projects/Sample/SampleGUI/bat folder.

3.7.3.3 Update application context interface

The GUI framework requires a context interface, which connects GUI resources to
context classes. This interface can be generated from within the ClassEditor. Be-
fore generating the context interface, it is suggested to compile all classes which
need to be compiled.

After all context classes have been compiled successfully, the context interface
might be build. When selecting Project / Build context interface from Re-
sourceRefs from the main menu, the source for the interface will be generated.

- 73 -

The generated code can be checked when selecting GUIContextDLL in the class
tree. The library will be created and stored to the project library folder
(Sample/SampleGUI/exe). Moreover, it will be copied to the Sample folder where
the application is looking for the library. When the Sample folder does not contain
this library, you should copy it manually:

Sample/SampleGUI/exe/SampleGUI.dll --> Sample/SampleGUI.dll

Now, you are ready to run the Sample application.

- 74 -

3.8 Run the application

In order to start the application, one may call the start procedure that had been
generated to the project root (Main.sh for Linux or Main.cmd for Windows in the
example).

The application may run with or without context library. Running the application
without context library just displays the data in the project tree. You may delete or
insert objects, but you cannot see details unless you 'Edit' the object via context
menu. OSI applications do not need a context library, but refer to context class
function stored in the resource database.

The tree/list context menu provides the standard functionality supported for the
tree without application context library, When running the application after the ap-
plication context library has been created, the application looks a bit different:

- 75 -

The alternating colors in the list and the object details on the right side are result of
caused by the application context library.

Notes: Main is just the name that had been used for the sample application. Any
other application name might be used instead when creating the GUI application
(project). See also Design a GUI application/Create GUI application.

3.8.1 Run the Application (Linux)

To run the application execute the Main.sh that has been generated when creating
application resources (Design a GUI application/Create GUI application). The
command file is located in the project's root directory:

~/odaba/Sample$./Main.sh

3.8.2 Run the application (Windows)

To run the application execute the Main.cmd that has been generated when creat-
ing application resources (Design a GUI application/Create GUI application).
The command file is located in the project's root directory:

...>E:\Sample\Main.cmd

- 76 -

Notes: If you are missing the command file, please review the notes in 'Design a
GUI application/Create GUI application' as they contain vital information and re-
quire your interaction.

	1 Introduction
	2 Installation
	2.1 Installing ODABA under Linux
	2.1.1 Compile and install the Linux Package
	2.1.2 Install documentation

	2.2 Installing ODABA under MS Windows
	2.2.1 Installing ODABA binaries under MS Windows
	2.2.2 Install documentation
	2.2.3 Compile Windows version
	2.2.4 .Net features
	2.2.4.1 .Net installation
	2.2.4.2 .Net wrapper library
	2.2.4.3 MS Office document generation
	2.2.4.3.1 Call creating MS Office document

	2.3 Version upgrade

	3 8 Steps to run an ODABA GUI application
	3.1 Create new project
	3.1.1 Create the Sample project (Linux)
	3.1.2 Create the Sample project (Windows)

	3.2 Load database schema
	3.2.1 Load Schema (Linux)
	3.2.2 Load Schema (Windows)
	3.2.3 ODL Script comments

	3.3 View or update schema definitions
	3.3.1 Initializing the ClassEditor (Linux)
	3.3.2 Initializing the ClassEditor (Windows)

	3.4 Create test data
	3.4.1 Create test data (Linux)
	3.4.2 Create test data (Windows)
	3.4.3 OSI Script comments

	3.5 Evaluate test data
	3.5.1 Evaluate test data (Linux)
	3.5.2 Evaluate test data (Windows)
	3.5.3 OShell Script comments

	3.6 Design a GUI application
	3.6.1 Starting Designer
	3.6.1.1 Calling Designer (Linux)
	3.6.1.2 Calling Designer (Windows)

	3.6.2 Create project resource
	3.6.3 Initialize project window from design pattern
	3.6.4 Standard application elements
	3.6.5 Defining data sources
	3.6.6 Create new design classes
	3.6.7 Virtual controls
	3.6.8 Design a complex control

	3.7 Define application rules
	3.7.1 Create new context class
	3.7.2 Edit context class
	3.7.3 [Create application rules library (context class library)]
	3.7.3.1 Update external resources
	3.7.3.2 Compile application context classes
	3.7.3.2.1 Create context library (Windows)
	3.7.3.2.2 Create context library (Linux)

	3.7.3.3 Update application context interface

	3.8 Run the application
	3.8.1 Run the Application (Linux)
	3.8.2 Run the application (Windows)

