

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010

 run

Data Exchange

ODABA
NG

 Page 2 of 19

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 Page 3 of 19

Content

1 Introduction ... 4
ODABA

NG
 ... 4

Platforms .. 4
Interfaces .. 4
User Interfaces ... 4

2 Data Exchange ... 5
Command line Tools ... 5
GUI Tool ... 5
OSI expressions ... 6
PropertyHandle .. 6

3 Data exchange definition .. 8
Access functions .. 8
File access parameter .. 8

4 Data Exchange schema .. 11

File Schema .. 11
File schema .. 11
Dictionary ... 12
ODL .. 13
OXML schema .. 13
CSV/ESDF ... 13
Delimiters ... 15

5 External file formats .. 16
BINA ... 16
ESDF, CSV .. 16
OIF ... 17
OXML ... 18

Accessing external files ... 18
PropertyHandle .. 18

 Page 4 of 19

1 Introduction

ODABA
NG

 ODABA
NG

 is an object-oriented database system that al-
lows storing objects and methods as well as causalities.
As an object-oriented database, ODABA

NG
 supports

complex objects (user-defined data types), which are
built on application relevant concepts.

ODABA
NG

 applications are characterised by a high flexi-
bility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represented
considerably better than in relational systems.

ODABA
NG

 applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABA
NG

 applications a favourite possibility
to solve highly complex jobs as come up in administra-
tive and knowledge areas.

Platforms ODABA
NG

 supports windows platforms (Win-
dows95/98/Me, Windows NT and Windows 2000) as well
as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

Interfaces ODABA
NG

 supports several technical interfaces:

 C++, COM as application program interface (this
allows e.g. using ODABA

NG
 in VB scripts and

applications)

 ODBC (for data exchange with relational data-
bases)

 XML (as document interface as well as for data
exchange)

User Interfaces ODABA
NG

 provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABA

NG
 provides a special ODABA

NG
 GUI build-

er.

 Page 5 of 19

2 Data Exchange

 Data Exchange provides different ways of importing or
exporting data from an ODABA

NG
 database to extended

comma separated files (ESDF, CSV), to xml files
(OXML, XML) or to object interchange format files (OIF).
OIF is the proposed standard format for exchanging data
between object-oriented databases (ODMG).

 While the capabilities of ESDF (CSV) are limited, OXML
and OIF allow transferring the complete content of a da-
tabase. Even though XML is the more common format,
OIF has the advantage that it should be supported by all
object oriented databases and it consumes less space.

 Besides different file formats ODABA
NG

 provides differ-
ent data exchange technologies.

Command line
Tools

ODABA
NG

 provides two data exchange tools, one for im-
port (Import) and another for exporting data (Export).

Import Import provides features for importing a file with a valid
import format into an ODABA database. This is a pre-
ferred way for importing data periodically, in which case
a batch job cab be prepared and called whenever re-
quired.

It is a possible but not the most comfortable way for ad-
hoc import processes, which can be solved better with
the GUI Data Exchange or from within OSI programs.

Export Import provides features for exporting selected data from
an ODABA

NG
 database to a file with one of the defined

formats. Also, this is a preferred way for exporting data
periodically, while ad-hoc data export becomes more
comfortable from within OSI or by using the GUI Data
Exchange tool.

GUI Tool The Data Exchange GUI tool provides features for de-
signing the content of a data exchange and running the
data exchange directly or creating a data exchange defi-
nition file (data exchange schema).

 The data exchange schema can be referred to later
when calling the command line tool or within an OSI
script.

 The GUI tool provides the most comfortable way for de-
signing a data exchange schema. It allows also running

 Page 6 of 19

the defined data exchange (e.g. for testing purpose).

OSI expressions In many cases data exchange is simple and can be di-
rectly called from within an OSI expression. OSI OQL
provides two built-in functions in order to import and ex-
port data. Those functions are the same functions which
are called from the command line and the GUI tool.

ToFile ToFile writes data from a defined collection to an exter-
nal file with one of the defined formats. The OSI query
may create a view for the data to be exported. Since the
data exchange schema supports property selections,
this is, however, not necessary in most cases.

FromFile FromFile imports data from an external file with one of
the supported formats into a collection. In general, one
cannot import data into a view, but there are views,
which are partially updateable, which would allow import-
ing data as well.

PropertyHandle You may access an external file by property handle. This
allows reading or writing data from a program or from
within an OSI expression. Property handles for external
files will not, however, import or export data automatical-
ly.

 Opening a file via property handle activates the rich
property handle functionality for the external file. Alt-
hough there are many features, which cannot be sup-
ported for an external file, many helpful functions of
property handle are still working for this data source
type,

 Accessing external data via property handle does not
require an exchange schema. A file schema, which does
not define data mapping, would be sufficient. Since file
schemata for CSV files can be derived very simple in
many cases, the external file does not require additional
information for being accessed.

 The property handle access functionality is the base for
the OSI functions FromFile and ToFile.

Open The file schema for external files can be defined in ad-
vance within the ODABA

NG
 dictionary as structure and

extent definition. In this case, the external file can simple
be accessed via the extent name, similar to any other
extent in the database.

OpenExtern Often, it is not very comfortable defining structure and
Property handles for external files in the dictionary. Es-

 Page 7 of 19

pecially CSV files carry metadata in the headline, which
contains sufficient information for extracting a file sche-
ma. Thus, property handle support an additional function
for opening external data sources, which are not defined
in the dictionary. This allows accessing data ad-hoc and
in much simpler in many cases.

 Page 8 of 19

3 Data exchange definition

 Data exchange definitions describe the file data source,
the schema location and format types for exchange file
and schema. Usually, the exchange definition is speci-
fied in a ToFile, File or FromFile operation, but this
might be hidden behind a more comfortable user inter-
face.

Access functions External files can be accessed in different ways.

 File – Read or write explicitly

 FromFile – Import from file

 ToFile – Export to file

File The File() function allows accessing an external file
structure, which is defined by an explicit or implicit file
schema. External files can be read or written, but de-
pending on the file structure, there are several re-
strictions. Most external file formats do support append-
ing data to the file, only.

FromFile The FromFile() function supports importing data from ex-
ternal files into a database. Importing files requires a
(usually explicit) data exchange schema (extended file
schema), which provides a mapping to database loca-
tions in addition to the structure definition of the import
file.

ToFile The ToFile function supports exporting data from a data-
base to an external file format. Es well as the FromFile()
function, ToFile requires a data exchange schema.

File access pa-
rameter

All file functions refer to same set of parameters, which
describe the location for data and file or exchange
schema.

file := „File‟ foperand_list

from_file := „FromFile‟ foperand_list

to_file := „ToFile‟ foperand_list

foperand_list := „Path‟ „=‟ string [foptions(*)]

foptions := „,‟ foption

foption := file_type | file_schema | headline

file_type := „FileType‟ „=‟ type_name

type_name := „ODL‟ | „OXML‟ | „OIF‟ | „CSV‟ | „ESDF‟ |

 „BINA‟

file_schema := „Definition‟ „=‟ def_location,

def_location := structure_name | string

headline := „Headline‟ „=‟ boolean

 Page 9 of 19

 At least the file path must be passed as operand to the
file access functions. Additional file options can be
passed for providing file and exchange schema and file
type.

file_type ODABA supports different external file types. The file
type need not to be defined, when the file name passed
in Path has one of the following extensions:

 BINA - binary flat file (.bina)

 CSV, ESDF - extended self delimiter file (.esdf, .csv)

 OXML - ODABA xml file (.oxml, .xml)

 OIF - object interchange format (.oif)

file_schema The file or exchange schema can be provided together
with the data. When the file or exchange schema is
passed in a separate file, the Definition option refers to
the location of the file definition. When no separate file
schema is passed the file schema is supposed to be part
of the external file (e.g. headline in an ESDF file).

 When the file or exchange schema is passed with the
data file (no file schema), the definition format has to
correspond to the format of the data file.

 BINA – no file definition supported in the file

 CSV, ESDF – ESDF headline format

 OXML - ODABA xsd definition

 OIF – ODL definition

def_location The file or exchange schema can be provided as defini-
tion in a dictionary, in which case the structure_name re-
fers to a structure definition in the dictionary. The file or
exchange schema might also be provided in a separate
file as ODL (.odl), OXML (.oxsd) or ESDF (.esdf) defini-
tion files, in which case the location is passed as quoted
string pointing to the file location.

The system determines the proper type from the file ex-
tension. When no valid extension could be found, the
system tries to analyze the definition file type by file con-
tent:

first character '<' : OXML format

first character '{' or beginning with a word followed by a
separator : ESDF format

Beginning with schema keyword, ODL is assumed.

Headline The headline option indicates, whether the external data

 Page 10 of 19

file contains an imbedded file schema (typically the
headline in CSV or ESDF files). Either headline or
schema location must be provided in order to obtain the
file schema for input operation.

In case of output operation, schema definition in the out-
put file header will be ignored, i.e. the exchange schema
must be defined in a separate definition (database
schema or schema file). When no exchange schema has
been provided, the input structure is used as an implicit
exchange schema, i.e. all attributes and depending ob-
ject instances are exported to the output.

 When defining both, the schema location is used. In
some cases, the schema location is verified against the
headline definition, in this case.

 Page 11 of 19

4 Data Exchange schema

 A data exchange schema is required for any type of data
exchange in order to provide the mapping rules between
internal and external data. The data exchange schema
is an intensional schema, i.e. it refers to structure defini-
tions, only. Thus, a data exchange schema can apply on
any collection (database) or file (external data source),
which fits into the rules defined in the data exchange
schema.

 Data exchange schemata can be provided in different
formats. The format of the data exchange schema does
not depend on the file format for the external data
source. Thus, you may still use the same data exchange
schema definition, even though you have changed the
format of the external file. Data exchange schemata can
be provided in one of the following formats:

 Dictionary – Structure definition in an ODABA
dictionary

 CSV/ESDF – Headline definition format

 OSI ODL – Schema definition language

 OXML – extended XML schema definition

 The data exchange schema is an extended file schema
with additional mapping rules for assigning external data
fields to database properties. The database property cor-
respondence is always defined in the source attribute,
which is an extension for all file schemata.

File Schema

File schema The file schema contains the structure or data type defi-
nition(s) required for describing the data in the external
file. Most of the rules for defining schemata of types
mentioned above are described in other documents.
Thus, only specific rules to be taken into consideration
when providing a file schema will be described here.

 Since all supported file formats are hierarchical formats,
i.e. properties or fields may contain sub-properties or
collection of related instances. There are limitations in a

 Page 12 of 19

few cases (e.g. for binary files), but this is no contradic-
tion for providing common principles when defining a file
schema.

Common file
schema

In contrast to database schema (object model), the file
schema does not support orders and relationships. The
following BNF definition provides an idea of the common
definition elements provided in all definition formats.

record := field_list

field_list := field(*)

field := [name] [data_type] [size]

 [sub_fields] [dimension] [db_source]

sub_fields := field_list

record Even though it be confusing to speak about a record in a
hierarchical data structure, we will the term record as en-
try for the definition, since in many cases, one knows
exactly what a record is. Sending Person data might be
as complex as possible, but we will probably consider
data for each person as a record in this data set.

name A record (or structure) consists of a number of fields
(properties, attributes). Each field may have got a name
(if not, artificial names are created as field0001,
field0002 etc.).

data_type The default data type is STRING (except for binary files,
which may contain binary data as well).

sub_fields When a field (or field Instances) are structured, a list of
sub-fields (describing a structure again) can be defined.
Each field in the sub-field list may have sub-fields etc.

dimension The default dimension is 1. Any other positive number
for fixed arrays or 0 for collections with undefined num-
ber of elements may replace the default dimension.

db_source The database source defines the corresponding data
source in a database. This might be a property name or
path, but not an expression. A data source is required for
importing or exporting data from/to external files but not
for reading external files by property handle, only.

 Each schema supporting these requirements is able to
describe a file schema. It becomes obvious, that OXML
schema and ODL provide these requirements, as well as
the ODABA dictionary does. For CSV or ESDF a specific
file definition format has been defined, which, in the sim-
ple case, corresponds to the CSV head line.

Dictionary Describing an external file structure in the dictionary

 Page 13 of 19

might be the most comfortable way for complex data
structures. Dictionary structures for external files may
consist of attributes, references and exclusive base
structures. External file definitions must not contain rela-
tionships.

 For assigning a data source to a field in an external file
is possible by means of the property source reference. In
case of defining more than one source references for a
property the assignment is done by field name, which
must be assigned as source definition name in this case.

ODL The ODL schema definition is a script equivalent to the
dictionary definition. It follows the same rules as defining
a structure in the dictionary. The example below shows a
complete definition for a Person data exchange file.

 STRUCT XAddress {

 STRING f_zip SOURCE(zip);

 STRING f_city SOURCE(city);

 STRING f_street SOURCE(street);

 STRING f_number SOURCE(number);

 };

 CLASS XPerson {

 ATTRIBUTE {

 STRING f_pid SOURCE(pid);

 STRING f_name SOURCE(name);

 STRING f_first_name SOURCE(first_name);

 STRING f_birth_data SOURCE(birth_date);

 STRING f_sex SOURCE(sex);

 STRING f_married SOURCE(married);

 STRING f_income SOURCE(income);

 };

 REFERENCE XAddress f_location[3] SOURCE(location);

 };

 Depending on import or export functions the database
source acts as target or source.

OXML schema An OXML schema is another equivalent for a dictionary
structure definition and can be used instead of an ODL
or dictionary definition.

CSV/ESDF The definition for CSV or ESDF (Extended Self Delimiter
Files) is an extension of a CSV file headline. In the min-
imal case it only consists of variable names.

 In order to support more complex data structures in a
comfortable and CSV compatible format, we introduced
ESDF, which is a CSV extension, since it supports com-
plex attributes as well as references.

 Page 14 of 19

 The rules for defining a CSV or ESDF file are described
in the subsequent BNF definition.

Headline := fields

fields := field [field_ext(*)]

field_ext := sep field

field := [name] [size] [sub_fields] [dimension] [source]

source := '=' path

size := '(' number ')'

dimension := '[' number ']'

sub_fields := '{' fields '}'

path := path_element [path_extension(*)]

path_extension:= '.' path_element

path_element := name [parameter]

parameter := get_parm | provide_parm

get_parm := '(' value ')'

provide_parm := '[' value ']'

value := path | constant

Data := items

items := [item] [item_ext(*)]

item_ext := sep [item]

item := dvalue | item_set | item_block

item_set := '[' items ']'

item_block := '{' items '}'

sep := ';' | '|' | '\t'

 The BNF describes the ESDF header and the data lines.
In contrast to CSV, ESDF limits field delimiter to „;‟, tab
and „|‟. Undefined symbols name, string, dvalue and
constant are standard symbols and do have the follow-
ing meaning.

name Is a field name which usually starts with an alphabetic
character or underscore.

number Is an integer value.

dvalue Any sequence of characters not containing field, string,
instance, collection or line separators (see “Delimiters”
below)..

 The file definition for an ESDF file is usually passed in
the first line of the file (headline). I might be passed,
however, also separately from the data file.

f_pid = pid; fname = name; f_first_name = first_name;

f_birth_date = birth_date; f_sex = sex; f_married = married;

f_income = income; f_location {f_zip = zip; f_city = city;

f_street = street; f_number = number}[3] = location

 When names in the headline are identical with database

 Page 15 of 19

source names, source assignments can be omitted:

pid,name;first_name,birth_date;sex;married;income;location{zip;

city;street;number}[3]

 When defining the file definition separately instead of
providing a headline, the definition may contain line
breaks:

 f_pid = pid;

 fname = name;

 f_first_name = first_name;

 f_birth_date = birth_date;

 f_sex = sex;

 f_married = married;

 f_income = income;

 f_location {

 f_zip = zip;

 f_city = city;

 f_street = street;

 f_number = number

 } [3] = location

Delimiters ESDF defines a reserved set of delimiter characters. De-
limiter characters must not appear in values without be-
ing quoted.

Field delimiter Characters „;‟, „|‟ and „\t‟ (tab) are considered as field de-
limiter. Field delimiters are considered as such, also
when appearing mixed, i.e. also when creating an ESDF
file using „\t‟ as field separator, values containing a „;‟
must be enclosed in string delimiters.

String delimiters „‟‟ and „”‟ are considered as string delimiters. The starting
string delimiter must be the terminating delimiter, too.
Starting a string value with „‟‟, the value may contain „”‟
and reverse. When starting string delimiters need to be
coded within the string, those must be preceded by an
„\‟.

„my name is “Paul”‟ // valid

„my name is \”Paul\”‟ // valid, same as above

„my name is \‟Paul\‟‟ // valid

“my name is „Paul‟” // valid, same as above

Instance delim-
iters

Instance delimiters „{„ and „}‟ are used to define begin
and end of complex (structured) data values. Instance
delimiter may appear within value collections but also
outside collections. Instance delimiters are not required
for base structure members.

Collection de-
limiter

Collection delimiters „[„ and „]‟ are used to define value or
instance collections.

 Page 16 of 19

5 External file formats

 ODABA supports different external file formats, which
can be accessed directly via PropertyHandle access
functions or via file functions File(), ToFile() and From-
File.

BINA Binary files are files with a fixed data structure and can
be considered as the most compressed format for data
exchange.

 There are, however, several limitations in using binary
files.

 Binary files always require an external file definition
(no headline definition supported).

 Binary files do support arrays or references with
fixed number of elements, only.

 In contrast to other files formats, binary files may contain
integer and float values or other binary data types.

ESDF, CSV The Extended Self Delimiter File format is an extension
of the CSV format. ESDF files contain one record per
line, i.e. line break indicated the end of a record. In con-
trast to CSV, ESDF supports complex attributes and ref-
erences.

 Since ESDF does not require any tags, it is the most ef-
ficient way of exchanging large data files. On the other
hand, it requires fields being defined in a correct se-
quence.

Specification ESDF has a simple BNF specification as described be-
low:

ESDFFile := [header] esdf_record(*)

Header := Headline nl

esdf_record := Data nl

 As line break, new line (NL), carriage return (CR) or both
are accepted after headline and between data lines.
Headlines are optional. File definitions might be also
passed separately.

Headline ESDF files may contain a headline defining the file or
exchange schema. Since headlines need not differ syn-
tactically from data lines, the file definition must pass the
headline option in order to indicate, that an ESDF file

 Page 17 of 19

contains a headline.

OIF The object interchange format is a standard suggested
by ODMG. The ODABA OIF has some extensions and
some limitations compared with the ODMF OIF. Never-
theless, there is a big common denominator between
both, which makes it possible exchanging data in OIF
format with any other object-oriented database support-
ing OIF.

 In contrast to other external file formats, OIF supports
additional features as the distinction between creating
and overwriting data in the database during import.

Specification An OIF file is an alternate recursion between property
and instance values. Each property value may consist of
a number of instance values and each instance value
consists of one or more property values. Thus, an OIF
file may contain a number of instances, but also a collec-
tion (property), which contains a number of instances.

OIF := OIFData | OIFInit

OIFData := prop_init(*)

OIFInit := prop_list | inst_list

prop_init := identifier ['='] prop_value [',']

prop_value := inst_init | inst_list

inst_list := '{' inst_init(*) '}'

inst_init := [inst_intro] [locator] inst_value

[',']

inst_intro := [identifier] scoped_name

locator := update_locator | create_locator

update_locator := '(' loc_init ')'

create_locator := '[' loc_init ']'

loc_init := constant | prop_init(*)

inst_value := constant | prop_list

prop_list := '{' prop_init(*) '}'

Delimiters Value delimiter „,‟ and assignment operator are optional
and should not be used when compatibility is required.

Locators In order to distinguish between replacing or creating,
ODABA OIF supports create and update locators. Cre-
ate locators follow the standard and will create new in-
stances when not yet existing.

 In contrast to ODMG OIF, which supports numerical
locators, only, ODABA OIF supports key locators, as
well. When passing a number in loc_init, this is interpret-
ed as position in a collection or in an array. When pass-
ing a string, it is interpreted as key value. Component

 Page 18 of 19

key values can be defined either by passing a string val-
ue with component values separated by „|‟ ([„Miller|Paul‟
]) or by passing the values by property names ([
first_name „Paul‟, name „Miller]).

Property lists ODMG OIF supports property values by position, i.e.
without preceding property name. Since this implies a
high risk for value mismatch, ODABA OIF does not sup-
port this feature and requires a property name in front of
each value assignment.

Head line When defining a “headline” at the beginning of an OIF
file, this must be defined as ODL schema definition be-
ginning with the schema keyword.

SCHEMA {

 …. // file schema definitions

}

OXML OXML is an xml format with several ODABA specific
schema extensions. Thus, xml is able to reflect the com-
plexity of ODABA database object model definition
completely.

 Providing an OXML schema separately, xml files can be
accessed via an OXML dictionary as OXML database.

 Using file access for accessing xml data, however, al-
lows importing or exporting xml data directly from/to an
external file according to the database source defini-
tions. Moreover, an xml file can be describes using an
ODL definition, which might be more comfortable.

Accessing external files

 There are different ways for accessing external files. Ex-
ternal files can be accessed from within a program using
the PropertyHandle function OpenExtern(). Another way
is accessing external files via OSI scripts using File(),
FromFile() or ToFile() functions.

 It is also possible defining extents in the database refer-
ring to external files. In this case, the external file can be
accessed simply by opening the extent with appropriate
PropertyHandle functions.

PropertyHandle PropertyHandle for external files can be created two

 Page 19 of 19

ways. One is defining an external extent in the dictionary
in advance. The other is to open a property handle call-
ing OpenExtern().

External extent When defining an extent for an external file, this can be
accessed by property handle functions after creating an
appropriate property handle.

 Defining an extent for accessing allows defining one or
more sort orders (indexes) for the extent, which are cre-
ated when opening the extent.

PropertyHandle ph(obhandle,”ExtFile”,PI_Read);

 After opening the property handle simple property han-
dle access functions (Get, Position, NextKey etc.) can be
used for selecting instances in the external extent.

OpenExtern OpenExtern() allows opening a property handle for ex-
ternal file access without defining it in the dictionary in
advance.

PropertyHandle ph;

char *path = “externalFile.esdf”;

char *filetype = NULL; // ESDF from extension

char *definition = NULL; // definition in headline

ph.OpenExtern(obhandle,path,definition,filetype,PI_Read);

 After opening the property handle simple property han-
dle access functions (Get, Position) can be used for se-
lecting instances in the external extent.

 OpenExtern() provides access to the external file but
does not automatically import or export the file.

