
 - 1 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111

01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101

10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100

10101101010101001100101001

run

Data Storage Formats

ODABA
NG

- 2 -

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 - 3 -

Table of Contents
1Introduction .. 4

2ODABA data storage formats ... 6

2.1Storing ODABA data in relational databases 7
2.1.1Implementing an access package ...22

2.2XML database ...26
2.2.1XML schema attribute extensions ...27

2.3File access via property handle ...29
2.3.1Flat or binary files ..31
2.3.2Comma separated format ...32
2.3.3ESDF format ..33
2.3.4Object Interchange Format (OIF) ..36
2.3.5ODABA XML format ..37

- 4 -

1 Introduction

ODABA ODABA is an terminology-oriented database system that
allows storing objects and methods as well as causali-
ties . As terminology-oriented database, ODABA sup-
ports complex object types (user-defined data types)
defined in a terminology model, which reflect application
relevant concepts.

ODABA applications are characterized by high flexibility.
In addition to object type or context hierarchies, ODABA
supports multifarious relations between object instances
(master and detail relations, relations between inde-
pendent object instances and others). This way, behav-
ior of objects in the real world can be represented con-
siderably better than in relational database systems.

ODABA supports event-driven applications concerning
the graphical user interface as well as the database lev-
el. Thus, application design is tightly related to the ex-
perts or customers problem, since it refers to the same
names and concepts as being defined by subject matter
experts. This enables ODABA to solve highly complex
jobs in administrative and knowledge areas.

Platforms ODABA supports windows platforms (from Windows 95
up to Windows 7) as well as UNIX platforms (Linux,
SUN Solaris). ODABA supports 64 and 32 bit technolo-
gies.

ODABA also runs well in heterogeneous client/server
environments or with Internet servers.

 - 5 -

Interfaces ODABA supports several technical interfaces:

 C++, .Net as application program interface (this
allows e.g. using ODABA in C# or VB scripts
and applications)

 ODABA Script Interface (OSI) for accessing da-
ta via a script language, which is similar to C# or
JAVA.

 Multiple storage support for using relational da-
tabases for storing ODABA data

 XML for supporting data exchange with complex
data structures

 OIF (object interchange format), flat files and
ESDF (extended self delimiter fields) for access-
ing data provided in external file formats

 Document exchange support for importing or
exporting data from/to open office or Microsoft
office documents.

Tools ODABA provides a number of database maintenance
tools, but also development tools in order to provide
terminology model definitions, data model specifications,
application design and others.

To support just-in-time documentation, all ODABA tools
provide extended documentation facilities, which are the
base for generating system and WEB documentation,
but also online help systems.

- 6 -

2 ODABA data storage formats

ODABA provides the feature of storing data in different database storage formats.
Following data storage types are supported:

 Relational databases (ORACLE, MySQL, MS SQL Server)

 OXML (XML based on ODABA schema extensions)

This does not mean, that ODABA is able to access any relational database or xml
file. When running ODABA on external data formats, those are managed by ODA-
BA in order to keep all extensional features provided by the system. Thus, external
formats must follow some basic rules defined for the different database formats.

 - 7 -

2.1 Storing ODABA data in relational databases

ODABA supports storing data in several relational databases. This is not the most
efficient way of accessing data stored in ODABA, but it provides additional data
access by well known SQL tools. Thus, running ODABA based on an SQL data-
base might increase acceptance by customers.

The following SQL databases have been chosen for ODABA support:

 ORACLE

 Microsoft SQL Server

 My SQL

This list might be expanded when ever required.

In order to create SQL table definitions for a project or module, one may call an
OSI expression as described below or use the ODE ClassEditor (see Class Edi-
tor/Generate external resources/SQL Definitions).

RDB access architecture

When running ODABA with a relational database, instances data is stored in rela-
tional tables. Optional, the administrator may decide whether to maintain m:n rela-
tionships in the RDBM or not. Thus, one may store data tables, only or data tables
plus relationship tables.

In order to obtain extended ODABA features as collection events, extended in-
stance and collection information etc. an additional database (Object Manager) is
required.

- 8 -

Extended information as update counts for instances or collections, weak-typed or
untyped collections or __IDENTITY/type mapping could hardly be handled in an
relational database. Thus, an Object Manager maintains collections (relationships
and references), but also update counts, locking and persistent write protection.

All services as transaction management, locking or workspace features are man-
aged by ODABA, since SQL databases do not provide sufficient support e.g. for
locking the children collection of a person. Moreover, ODABA cares about extend-
ed deletion features, maintaining inverse references and other specific object-
oriented database features.

OR mapping rules

Since the information content of a relational database is a subset of the infor-
mation, that can be stored in an object oriented database, mapping rules can be
defined for the "relational data" in the object-oriented database. The requirement
for mapping rules results from the fact, that relational databases do not support

complex attributes, which will be resolved to property path (address.city).

Moreover, relationships are transferred to mapping tables (m:n relationships).

Specific attributes result from the fact, that collections in ODABA (e.g. the children
of a person) are considered as objects. In order to benefit from this feature also

 - 9 -

when running the ODABA application in a relational database, collection attributes
are created, which refer to the local unique identifier for the collections (LOID).

In order to define relational tables, ODABA creates tables and attributes according
to the rules described below. First, ODABA type and property names are convert-
ed into ODABA table and attribute names. The ODABA table or attribute name is
always a name constructed from ODABA type and property names. ODABA table
and attribute names created might be truncated later on, when exceeding the
name size allowed by the target system.

ODABA table names are the corresponding table names for ODABA data types.
ODABA table names for M:N relationships are composed from several property
and type names. Table names might be converted in to target system table names
(e.g. Oracle table names), when exceeding the maximum length.

ODABA attribute names are property names. Property names in complex attrib-
utes are preceded by the property name for the attribute. Thus, ODABA attribute
names may contain a number of ODABA property names separated by dots.

Depending on the features of the target database system, comments are stored to
the table and column definitions and/or written to the table definition file.

The examples are generated from the schema definition below describing an up-
date register for documents and presentations.

//******************************** Schema

// type example

// date 10-03-20 17:47:25.82

// dbsource - ODABA Version 10.0

//***

UPDATE SCHEMA example

{

//******************************** Enumeration

// type UpdateTypes

// date 10-03-20 17:47:25.95

// dbsource - ODABA Version 10.0

//***

UPDATE ENUM UpdateTypes

{

 change = 3,

 create = 2,

 delete = 1,

 other = 0,

};

//******************************** Class

// type Document

// date 10-03-20 17:47:26.10

// dbsource - ODABA Version 10.0

- 10 -

//***

NEW CLASS Document PERSISTENT VERSION=0 TYPE_ID=1756 GUID

 : PUBLIC UpdateObject GUID OWNER updateObject

 VERSION=0

 ORDERED_BY (ik UNIQUE)

(

 KEY { IDENT_KEY ik(id_number); };

 ALIGNMENT = 0;

)

{

};

//******************************** Class

// type Notice

// date 10-03-20 17:47:27.06

// dbsource - ODABA Version 10.0

//***

NEW CLASS Notice PERSISTENT VERSION=0 TYPE_ID=1753 GUID

(

 KEY { IDENT_KEY ik(id_number); };

 ALIGNMENT = 0;

)

{

 ATTRIBUTE {

 PROTECTED INT(10,0) id_number

 VERSION=0;

 };

 REFERENCE {

 PROTECTED MEMO(4000) OWNER text [1]

 VERSION=0;

 };

};

//******************************** Class

// type Presentation

// date 10-03-20 17:47:27.18

// dbsource - ODABA Version 10.0

//***

NEW CLASS Presentation PERSISTENT VERSION=0 TYPE_ID=1757 GUID

 : PUBLIC UpdateObject GUID OWNER updateObject

 VERSION=0

 ORDERED_BY (ik UNIQUE)

(

 KEY { IDENT_KEY ik(id_number); };

 ALIGNMENT = 0;

)

{

};

//******************************** Class

// type Update

// date 10-03-20 17:47:27.21

// dbsource - ODABA Version 10.0

 - 11 -

//***

NEW CLASS Update PERSISTENT VERSION=0 TYPE_ID=1754 GUID

 : PUBLIC Notice GUID UPDATE Notice

 VERSION=0

 BASED_ON Notice

(

 KEY { IDENT_KEY ik(id_number); };

 ALIGNMENT = 0;

)

{

 ATTRIBUTE {

 PROTECTED STRING(100) title

 VERSION=0;

 PROTECTED UpdateTypes update_types

 VERSION=0;

 };

 REFERENCE {

 PROTECTED Notice UPDATE OWNER notices

 VERSION=0;

 };

 RELATIONSHIP {

 PROTECTED Update UPDATE related_updates

 VERSION=0

 INVERSE referenced_in

 BASED_ON Update

 ORDERED_BY (ik UNIQUE);

 PROTECTED Update UPDATE SECONDARY referenced_in

 VERSION=0

 INVERSE related_updates

 BASED_ON Update

 ORDERED_BY (ik UNIQUE);

 PROTECTED UpdateObject UPDATE WEAK_TYPED SECONDARY object [1]

 VERSION=0

 INVERSE updates

 BASED_ON *

 ORDERED_BY (ik UNIQUE);

 };

};

//******************************** Class

// type UpdateObject

// date 10-03-20 17:47:27.35

// dbsource - ODABA Version 10.0

//***

NEW CLASS UpdateObject PERSISTENT VERSION=0 TYPE_ID=1755 GUID

(

 KEY { IDENT_KEY ik(id_number); };

 ALIGNMENT = 0;

)

{

 ATTRIBUTE {

 PROTECTED INT(10,0) id_number

 VERSION=0;

 };

 RELATIONSHIP {

 PROTECTED Update UPDATE updates

- 12 -

 VERSION=0

 INVERSE object

 BASED_ON Update;

 };

};

UPDATE EXTENT Document UPDATE MULTIPLE_KEY OWNER Document

 VERSION=0

 ORDERED_BY (ik UNIQUE LARGE);

UPDATE EXTENT Notice UPDATE MULTIPLE_KEY OWNER Notice

 VERSION=0

 ORDERED_BY (ik UNIQUE LARGE);

UPDATE EXTENT Presentation UPDATE MULTIPLE_KEY OWNER Presentation

 VERSION=0

 ORDERED_BY (ik UNIQUE LARGE);

UPDATE EXTENT Update UPDATE MULTIPLE_KEY OWNER Update

 VERSION=0

 ORDERED_BY (ik UNIQUE LARGE);

};

Memo and blob properties

Two tables are created in order to store the MEMO and BLOB type properties.
Each row in the table contains a local unique identifier (LOID) for the MEMO or
BLOB property and the CLOB or BLOB field in order to store the large character or
binary object.

References to MEMO or BLOB properties are stored as links to the SYS__MEMO
or SYS__BLOB table. Within the current table, a link attribute to the MEMO or
BLOB table is defined with the odaba property name.

-- oracle

 CREATE TABLE "SYS__MEMO"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL PRIMARY KEY USING INDEX

TABLESPACE "example_INDEX",

 "SYS__ENTRY" CLOB

) LOB ("SYS__ENTRY") STORE AS (STORAGE (INITIAL 4M) NOCACHE

NOLOGGING);

 CREATE TABLE "SYS__BLOB"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL PRIMARY KEY USING INDEX

TABLESPACE "example_INDEX",

 "SYS__ENTRY" BLOB

) LOB ("SYS__ENTRY") STORE AS (STORAGE (INITIAL 4M) NOCACHE

NOLOGGING);

-- ...

 ALTER TABLE "Notice" ADD ("text" NUMERIC (20,0) REFERENCES "SYS__MEMO"

);

 - 13 -

Enumerations

For each enumeration a table with the enumeration name will be created. Enu-
merator values (code and title) are stored to the table. Hierarchical enumerations
are stored as flat ones. Details as constraint, enumerator type or detailed descrip-
tion are not stored to the relational database, since those information is still availa-
ble via the ODABA dictionary.

Enumerator names and values are used as being defined in ODABA.

-- oracle

 CREATE TABLE "UpdateTypes"

 (

 "code" NUMERIC(5,0) NOT NULL ,

 "name" VARCHAR(40) ,

 PRIMARY KEY ("code") USING INDEX TABLESPACE "example_INDEX"

);

INSERT INTO "UpdateTypes" VALUES ('1', 'delete');

INSERT INTO "UpdateTypes" VALUES ('2', 'create');

INSERT INTO "UpdateTypes" VALUES ('3', 'change');

INSERT INTO "UpdateTypes" VALUES ('0', 'other');

Complex data typed

Instance data is stored in tables having the same name as the complex data type
defined in the ODABA object model. All tables get an additional property
SYS__LOID, which holds the local object identity for each instance. All relational
tables are indexed by SYS__LOID. For each complex ODABA data type a table
will be created.

-- oracle

 CREATE TABLE "Update"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL,

 PRIMARY KEY ("SYS__LOID") USING INDEX TABLESPACE "example_INDEX"

);

Extents

Being a member of an extent is an additional information, which cannot be directly
stored in the relational database. Thus, each extent creates an additional refer-
ence attribute in the data type referenced in the extent (owner reference, since
extents are usually the owner of the instances).

The name for the owner reference is the is the extent name succeeded by two
underscores (Notice__). Thus, it becomes possible to distinguish between notices
stored in the Notice extent and those stored locally for an Update instance.

-- oracle

 ALTER TABLE "Notice" ADD ("Notice__" NUMERIC(20,0));

- 14 -

Inheritance

When a type inherits exclusive from its base type, properties defined in the base
type(s) are considered as properties of the type. Thus, Attributes of exclusive in-
herited base types might become attributes in any number of tables.

When a data type inherits shared from its base structure, attributes are stored in a
separate table for the base type using the same names as in the data model defi-
nition. An attribute with the name of the base type member is added to the table,
which refers to the base type table entry LOID (SYS__LOID) value for the base
instance in the referenced table.

-- oracle, shared base type

 ALTER TABLE "Update" ADD ("Notice" NUMERIC(20,0) REFERENCES "Notice"

);

Attributes

Attributes are defined as table columns using the attribute name. Complex attrib-
utes are provided as resolved attribute paths including dots, which are part of the

attribute path (address.city). Such names, usually require name quotes, which

depend on target system. When referring to attribute names in exclusive base
types, names are not prefixed.

When an attribute defines a fixed array, a column will be created for each array
element. Each array element except the first will be extended by the element posi-
tion in the array (e.g. name_1).

ODABA data types are converted to appropriate types in the target system. Gen-
erated column types may differ for different target systems. Enumeration values
are converted into link columns, e.g. columns referring to the enumeration table.

// oracle

 ALTER TABLE "Update" ADD ("title" VARCHAR(100));

 ALTER TABLE "Update" ADD ("update_type" NUMERIC(5,0) REFERENCES

"UpdateTypes");

Collections and references

Collections and singular references allowing asynchronous updates create a col-
lection identity (LOID) in order to identify the collection object. The collection ob-
jects play an important role, when updating collections. Essential parts of the ap-
plication logic interface (ALI) are based on collection events. For using this fea-
tures, collection attributes are stored in table instances as well, even though the
are not of interest for relational queries.

Collection attributes will be created for all references/relationships, which are mul-
tiple or weak-typed or can be updated asynchronously.

 - 15 -

Collection attributes are stored with their property (reference or relationship) name
preceded by two underscores (__related_updates).

-- oracle

 ALTER TABLE "Update" ADD ("__related_updates" NUMERIC(20,0));

 CREATE TABLE "Update__related_updates"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

References

References (and owning relationships) define a 1:N relationship and create an
owner attribute in the table defined by the referenced type. The column name is
constructed from the property (reference or relationship) name and the current
type name (e.g. notices__Update).

-- oracle

 ALTER TABLE "Notice" ADD ("notices__Update" NUMERIC(20,0) REFERENCES

"UpdateRegister");

Notes: Usually, owning relationships are defined as primary relationships. When
this is not the case, the inverse relationship will create a M:N table, in addition.
This is not a problem, but leads to (unnecessary) redundancy.

Relationships

For not owning relationships, a mapping table for related instances will be created,
when the relationship is primary. The table name will be constructed from the ob-
ject name and the relationship name (e.g. Update__related_updates). The two
columns contain the local unique identifiers for the rows in the target tables as be-
ing referenced in the column statement.

When exceeding the naming limits for the target system, a unique table name will
be created.

-- oracle

 CREATE TABLE "Update__related_updates"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

Weak-typed collections

- 16 -

Weak typed collections (references or relationships) create mapping tables for
each data type which inherits directly or indirectly exclusive from the referenced
type. Mapping tables are created for references or primary relationships, only. The
table names for weak-typed collection are constructed from the current table
name, the property name and the target table name separated by double under-
score (Update__object__Document).

-- oracle, simulated by setting object in Update to primary

 CREATE TABLE "Update__object"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "UpdateObject",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

 CREATE TABLE "Update__object__Document"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Document",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

 CREATE TABLE "Update__object__Presentation"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Presentation",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

Generic attributes

Generic attributes are considered as multiple references and will create a collec-
tion attribute in the current table and an owner attribute in the referenced type for
the generic attribute (see References).

ODL example

SQL example (oracle)

Below, you will find the complete set of table definitions created from the example
(update register) described in the ODL example.

--

-- SQL Schema : ODABA Dictionary for example

-- Target DB : Oracle

-- Version : 1.0

-- Date : 10-03-20 Time: 19:00:55.76

--

 CREATE TABLE "SYS__MEMO"

 (

 - 17 -

 "SYS__LOID" NUMERIC(20,0) NOT NULL PRIMARY KEY USING INDEX

TABLESPACE "example_INDEX",

 "SYS__ENTRY" CLOB

) LOB ("SYS__ENTRY") STORE AS (STORAGE (INITIAL 4M) NOCACHE

NOLOGGING);

 CREATE TABLE "SYS__BLOB"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL PRIMARY KEY USING INDEX

TABLESPACE "example_INDEX",

 "SYS__ENTRY" BLOB

) LOB ("SYS__ENTRY") STORE AS (STORAGE (INITIAL 4M) NOCACHE

NOLOGGING);

 CREATE TABLE "UpdateTypes"

 (

 "code" NUMERIC(5,0) NOT NULL ,

 "name" VARCHAR(40) ,

 PRIMARY KEY ("code") USING INDEX TABLESPACE "example_INDEX"

);

INSERT INTO "UpdateTypes" VALUES ('3', 'change');

INSERT INTO "UpdateTypes" VALUES ('2', 'create');

INSERT INTO "UpdateTypes" VALUES ('1', 'delete');

INSERT INTO "UpdateTypes" VALUES ('0', 'other');

 CREATE TABLE "Document"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL,

 PRIMARY KEY ("SYS__LOID") USING INDEX TABLESPACE "example_INDEX"

);

 CREATE TABLE "Notice"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL,

 PRIMARY KEY ("SYS__LOID") USING INDEX TABLESPACE "example_INDEX"

);

 CREATE TABLE "Presentation"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL,

 PRIMARY KEY ("SYS__LOID") USING INDEX TABLESPACE "example_INDEX"

);

 CREATE TABLE "Update"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL,

 PRIMARY KEY ("SYS__LOID") USING INDEX TABLESPACE "example_INDEX"

);

 CREATE TABLE "UpdateObject"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL,

 PRIMARY KEY ("SYS__LOID") USING INDEX TABLESPACE "example_INDEX"

);

-- Extent references

 ALTER TABLE "Document" ADD ("Document__" NUMERIC(20,0));

 COMMENT ON COLUMN "Document"."Document__" IS 'Owner: Document';

- 18 -

 ALTER TABLE "Notice" ADD ("Notice__" NUMERIC(20,0));

 COMMENT ON COLUMN "Notice"."Notice__" IS 'Owner: Notice';

 ALTER TABLE "Presentation" ADD ("Presentation__" NUMERIC(20,0));

 COMMENT ON COLUMN "Presentation"."Presentation__" IS 'Owner:

Presentation';

 ALTER TABLE "Update" ADD ("Update__" NUMERIC(20,0));

 COMMENT ON COLUMN "Update"."Update__" IS 'Owner: Update';

-- Structure Definition Document

 ALTER TABLE "Document" ADD ("id_number" NUMERIC(10,0));

 COMMENT ON COLUMN "Document"."id_number" IS 'Attribute:

Document.updateObject.id_number';

 ALTER TABLE "Document" ADD ("__updates" NUMERIC(20,0));

 COMMENT ON COLUMN "Document"."__updates" IS 'Collection:

Document.updateObject.updates';

 CREATE TABLE "Document__updates"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Document",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

-- Structure Definition Notice

 ALTER TABLE "Notice" ADD ("id_number" NUMERIC(10,0));

 COMMENT ON COLUMN "Notice"."id_number" IS 'Attribute:

Notice.id_number';

 ALTER TABLE "Notice" ADD ("text" NUMERIC (20,0) REFERENCES

"SYS__MEMO");

 COMMENT ON COLUMN "Notice"."text" IS 'Reference: Notice.text';

-- Structure Definition Presentation

 ALTER TABLE "Presentation" ADD ("id_number" NUMERIC(10,0));

 COMMENT ON COLUMN "Presentation"."id_number" IS 'Attribute:

Presentation.updateObject.id_number';

 ALTER TABLE "Presentation" ADD ("__updates" NUMERIC(20,0));

 COMMENT ON COLUMN "Presentation"."__updates" IS 'Collection:

Presentation.updateObject.updates';

 CREATE TABLE "Presentation__updates"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Presentation",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

-- Structure Definition Update

 ALTER TABLE "Update" ADD ("Notice" NUMERIC(20,0) REFERENCES "Notice"

);

 COMMENT ON COLUMN "Update"."Notice" IS 'Reference: Update.Notice';

 ALTER TABLE "Update" ADD ("title" VARCHAR(101));

 COMMENT ON COLUMN "Update"."title" IS 'Attribute: Update.title';

 ALTER TABLE "Update" ADD ("update_types" NUMERIC(5,0) REFERENCES

"UpdateTypes");

 COMMENT ON COLUMN "Update"."update_types" IS 'Attribute:

Update.update_types';

 ALTER TABLE "Update" ADD ("__notices" NUMERIC(20,0));

 COMMENT ON COLUMN "Update"."__notices" IS 'Collection:

Update.notices';

 - 19 -

 ALTER TABLE "Notice" ADD ("notices__Update" NUMERIC(20,0) REFERENCES

"Update");

 COMMENT ON COLUMN "Notice"."notices__Update" IS 'Owner: notices';

 ALTER TABLE "Update" ADD ("__related_updates" NUMERIC(20,0));

 COMMENT ON COLUMN "Update"."__related_updates" IS 'Collection:

Update.related_updates';

 CREATE TABLE "Update__related_updates"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

 ALTER TABLE "Update" ADD ("__referenced_in" NUMERIC(20,0));

 COMMENT ON COLUMN "Update"."__referenced_in" IS 'Collection:

Update.referenced_in';

 ALTER TABLE "Update" ADD ("__object" NUMERIC(20,0));

 COMMENT ON COLUMN "Update"."__object" IS 'Collection: Update.object';

-- Structure Definition UpdateObject

 ALTER TABLE "UpdateObject" ADD ("id_number" NUMERIC(10,0));

 COMMENT ON COLUMN "UpdateObject"."id_number" IS 'Attribute:

UpdateObject.id_number';

 ALTER TABLE "UpdateObject" ADD ("__updates" NUMERIC(20,0));

 COMMENT ON COLUMN "UpdateObject"."__updates" IS 'Collection:

UpdateObject.updates';

 CREATE TABLE "UpdateObject__updates"

 (

 "SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "UpdateObject",

 "SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Update",

 PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE

"example_INDEX"

);

Naming

As long as possible, the target system uses the ODABA names.

Names supported in relational databases differ. Thus, Oracle supports not more
than 30 characters for table and column names, while MS SQL Server allows table
and column names up to 128 characters. Since table names may consists of three
ODABA names plus underline characters and column names do not have any lim-
it, names have to be truncated in order to provide unique names.

Moreover, name mapping is required later on for data access and also for docu-
menting the mapping between ODABA and the target SQL database. Thus, when
creating table definitions for a selected target system, a name translation table will
be created, which provides the mapping between table and column names con-
structed by ODABA and table and column names in the target system. Translation
tables are stored in the dictionary in following collections:

 SDB_SQLTarget('Oracle').names (Oracle mapping)

 SDB_SQLTarget('MSSQL').names (MS SQL Server mapping)

 SDB_SQLTarget('MySQL').names (MySQL mapping)

- 20 -

Name mappings can be viewed also in the ClassEditor Objects/SQL Targets.

Limitations

Running ODABA with a relational database underneath causes some restrictions.
The first and most important one is, that the relational data storage might be ac-
cessed by SQL tools in order to perform queries, but not in order to update the
database. All update operations must pass through the object relation mapper
(ORM). Otherwise, the ORM database might become inconsistent. In detail, fol-
lowing restrictions have to be taken into account:

 Since relational databases usually do not support namespaces for tables,
data model definitions running with relational data storage must not define
persistent namespaces. Instead, type names should be prefixed or
marked in any other way. In the model definition, one may define object
types in modules or namespaces, but those must not be marked as active
namespaces, i.e. type names must be unique within the dictionary.

 In order to guarantee proper maintenance of inverse relationships, ODA-
BA supports update-able relationships. In a relational database, update-
able relationships behave similar as many to many relations. This means
that queries against the relational database must include an additional join
operation when referring to singular update-able links.

 ODABA supports VOID type collections, i.e. collections, which may contain
instances of any type. Theoretically, void collections could be supported,
but this would require creating link tables between the type defining the
VOID collection and all other defined types. This seems not to make much
sense and has not been implemented. We suggest using weak-typed col-
lections, instead.

 Property names in exclusive base types must be unique in order to avoid
naming conflicts.

 Names of complex attributes are resolved. In case of deep nesting, this
might exceed name length limits in the target system. The mapping tools
care about creating proper names, but those might be difficult to read.
Hence, attribute nesting and name length should be selected in a way that
meets the target system requirements.

 Instance versioning is not yet supported for relational storage.

 Extension properties are not yet available.

 Many databases do not support different text encoding methods for text
fields, i.e. one should use STRING (uses default encoding) always in or-
der to avoid conflicts.

Other limitations are of minor importance. There are several features that require
specific ODABA storage. Thus, when using work spaces, all workspace data is

 - 21 -

stored in ODABA databases and is accessible via SQL only, when the workspace
data has been consolidated to the root base.

Similar, long external transactions require an external ODABA transaction data-
base and data becomes available only after committing the external transaction.

SYS__LOID values (identities) are the base for all links and instance identification
and must not change after being created.

- 22 -

2.1.1 Implementing an access package

Implementing an access package for supporting another not yet supported type of
relational database means implementing an RDB access package, which inherits
from RootBase_RDB. The SQL_RootBase package provides some basic func-
tionality that is helpful for most RDB access packages (conversion tables, link
cache etc).

The typical implementation of an access package is documented in
XSQL_RootBase class, which provides a list of functions to be implemented in
order to support an SQL access package.

Access packages to relational databases support two ways of accessing columns.
One is by column or attribute name. Since several systems support internal col-
umn numbers when accessing data from within a program, columns might be ac-
cessed via column number, also. In order to access columns by number, the
GetColumnNumber() function has to be overloaded in order to provide the proper
column number for each table column/attribute.

When using column numbers, GetMemo() and InsertMemo() have to be overload-
ed as well, since those functions are referring to column names rather than to col-
umn numbers.

The access logic is mainly managed by the SQL_RootBase and SQLTable base
class. In order to provide package (RDB) specific functionality, those classes have
to be overloaded in corresponding OR-Mappers.

Implementing an access package

Implementing an OR-Mapper requires overloading the following functions in
SQL_RootBase:

 Close

 Debug

 GetRootBase

 GetMemo

 InsertMemo

 LinkInstance

 LinkOwner

 Open

 RBType

 [StartCommit]

 [StopCommit]

 UnlinkInstance

 UnlinkOwner

 UpdateMemo

 destructor

 - 23 -

Moreover, following functions have to be overloaded in the SQLTable class:

 Debug

 DeleteRow

 FinishInsertRow

 FinishSelectRow

 FinishUpdateRow

 GetColumn

 InsertRow

 SelectRow

 SetColumn

 UpdateColumn

 UpdateRow

 destructor

Instance operations are introduced by a row function (SelectRow(), InsertRow(),
UpdateRow(), DeleteRow()), which usually locate the requested row for the opera-
tion. After locating a row in a table, several column function calls are made
(GetColumn(), SetColumn(), UpdateColumn()) in order to read, create or update
column values. Column values are provided as character data. Finally, the Fin-
ish...() functions are called in order to indicate the end of row processing. The
functions usually have to be be overloaded in order to perform final row pro-
cessing.

Apart from updating object attribute values, link information will be updated before
and after updating attribute values in instances. In order to update link information,
LinkInstance() or LinkOwner() and UnlinkInstance() or UnlinkOwner() have to be
implemented in order to maintain M:N or 1:M relationships. Both functions are
called only ones for a table row in order to create or delete a parent (reference) or
relationship link.

In case of parent (owner) links, the link value has to be updated in the attribute
passed to the function. In case of a relationship (instance) link, a mapping row has
to be inserted into the M:N relationship table.

Data conversion

Data but also table column names require conversion. In order to convert column
and table names properly, the base class SQL_RootBase provides a name con-
version function Name(). From the name and the database specific maximum
name length, the function constructs an appropriate database specific table or at-
tribute name, which correspond to the name generated as table or attribute name
when generating the table definition. All functions receiving table or attribute
names, receive the original ODABA type or property names, which have to be
converted to table or attribute names.

Attribute values are always passed in string formats (ASCII or Latin1) with a termi-
nating 0. Following data formats are passed:

- 24 -

 string - ASCII string (latin1)

 integer - "[-]n*[.n*]" (decimal point according precision definition)

 float - "[-]n*[.n*][E[-]n*]"

 time - "hh:mm:ss,hs"

 date - "yy-mm-dd"

 datetime - "yy-mm-dd hh:mm:ss,hs"

 guid - "A-xxxxxxxx-xxxxxxxx-xxxx-xxxx-xxxxxxxx"

Values have to be passed in both directions referring to the same format, i.e. the
access package will obtain values in the format above when updating columns and
has to return values in an appropriate format when reading values.

Transaction management

Transaction management is mainly organized on ODABA level, i.e. a request of
storing instances to the database is submitted by ODABA only, when committing a
transaction. Thus, all update requests are send to the root base in the commit
phase.

There are, however, RDB specific requirements passed to SQL_RootBase while a
transaction is running. Thus, LinkInstance() and UnlinkInstance() requests are sent
while running a transaction and will be cached by SQL_RootBase.

When committing a transaction, StartCommit() is called in order to indicate the be-
ginning of the commit request. StopCommit() indicates, that committing data has
been finished. StartCommit() is called in order to maintain table links. All links to be
removes are reset here. When reimplementing or overloading the function, one
has to take into account, that links have to be removed, before instances can be
stored to the transaction. Between StartCommit() and StopCommit() all updated
requests are submitted by ODABA calling UpdateInstance() or UpdateMemo().
After storing instances, StopCommit() is called, which will setup new links created
during the transaction. This can be done, after instances have been created within
the database.

As long as StartCommit() has not been called, the access package can assume,
that access is read-only. This is true also after StopCommit().

By default, link requests are submitted in the EndCommit() function. The function
reads all link and unlink requests from the cache (link_cache) and call
LinkInstance() or UnlinkInstance() in order to handle the request. Those functions
must be overloaded in the appropriate access package.

For write optimization, it might, however, be more efficient processing the link
cache in the access package. in this case, outstanding link requests must be writ-
ten to database before terminating the commit phase. Link requests can be ob-
tained from the link cache (link_cache.RemoveHead()).

Create, delete and update instance

 - 25 -

New entries are usually created via an update request. In order to distinguish new
instances from old instances, the data position (acb::GetPosition()) can be
checked. In case the position is 0, the instance is considered as new instance. In
order to mark the instance as existing after creating is, the position should be set
to a positive value (loid is suggested).

- 26 -

2.2 XML database

ODABA provides features for accessing XML files like an ordinary ODABA data-
base. The idea is not maintaining persistent data in an XML file, but opening the
possibility accessing XML data by the same means as accessing an ODABA data-
base.

 - 27 -

2.2.1 XML schema attribute extensions

ODABA schema definitions require some ODABA specific schema extensions.
Schema extensions are available at www.odaba.com/OXMLExtensions.xsd. Using
this schema extensions allow providing complete schema definitions via an XML
schema.

A summary of ODABA XML schema extensions is given in the definition below.

Rules:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema targetNamespace="http://www.w3.org/XML/1998/namespace"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="alignment" type="xs:integer"/>

<xs:attribute name="assignment" type="xs:string"/>

<xs:attribute name="baseCollection" type="xs:string"/>

<xs:attribute name="complete" type="xs:boolean" default="false"/>

<xs:attribute name="dataType" type="xs:string"/>

<xs:attribute name="deleteEmpty" type="xs:boolean" default="false"/>

<xs:attribute name="dependent" type="xs:boolean" default="false"/>

<xs:attribute name="descending" type="xs:boolean" default="false"/>

<xs:attribute name="dimension" type="xs:integer"/>

<xs:attribute name="distinct" type="xs:boolean" default="false"/>

<xs:attribute name="elementType">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="BaseType"/>

 <xs:enumeration value="Attribute"/>

 <xs:enumeration value="Reference"/>

 <xs:enumeration value="Relationship"/>

 <xs:enumeration value="Key"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

<xs:attribute name="guid" type="xs:boolean" default="false"/>

<xs:attribute name="ignoreCase" type="xs:boolean" default="false"/>

<xs:attribute name="intersect" type="xs:boolean" default="false"/>

<xs:attribute name="inverse" type="xs:string"/>

<xs:attribute name="keyComponents" type="xs:string"/> <!-- one or more key

components separated by comma, e.g. "name(descending),first_name" -->

<xs:attribute name="identKey" type="xs:boolean" default="false"/>

<xs:attribute name="multipleKey" type="xs:boolean" default="false"/>

<xs:attribute name="noCreate" type="xs:boolean" default="false"/>

<xs:attribute name="notEmpty" type="xs:boolean" default="false"/>

<xs:attribute name="orderKeys" type="xs:string"/> <!-- one or more order

keys separated by comma, e.g. "key_name1(unique),keyname2" -->

<xs:attribute name="owner" type="xs:boolean" default="false"/>

<xs:attribute name="precision" type="xs:integer"/>

<xs:attribute name="privilege">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="private"/>

 <xs:enumeration value="public"/>

 <xs:enumeration value="protected"/>

http://www.odaba.com/OXMLExtensions.xsd

- 28 -

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

<xs:attribute name="referenceLevel">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="byValue"/>

 <xs:enumeration value="byReference"/>

 <xs:enumeration value="byPointer"/>

 <xs:enumeration value="byPointerPointer"/>

 <xs:enumeration value="generic"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

<xs:attribute name="secondary" type="xs:boolean" default="false"/>

<xs:attribute name="size" type="xs:integer"/>

<xs:attribute name="static" type="xs:boolean" default="false"/>

<xs:attribute name="subSet" type="xs:string"/>

<xs:attribute name="superSet" type="xs:string"/>

<xs:attribute name="transient" type="xs:boolean" default="false"/>

<xs:attribute name="update" type="xs:boolean" default="false"/>

<xs:attribute name="version" type="xs:integer"/>

<xs:attribute name="virtual" type="xs:boolean" default="false"/>

<xs:attribute name="weakTyped" type="xs:boolean" default="false"/>

</xs:schema>

 - 29 -

2.3 File access via property handle

You may access an external file by property handle. This allows reading or writing
data from a program or from within an OSI expression. Property handles for exter-
nal files will not, however, import or export data automatically.

Opening a file via property handle activates property handle functionality for the
external files. Although there are many features, which cannot be supported for an
external file, many helpful functions of property handle are still working for this da-
ta source type.

Accessing external data via property handle does not require an exchange sche-
ma. A file schema, which does not define data mapping, would be sufficient. Since
file schemata for CSV files can be derived very simple in many cases, the external
file does not require additional information for being accessed.

The property handle access functionality is the base for the OSI functions fromFile
and toFile, which are used for explicit data exchange.

Property handle file extent

The file schema for external files can be defined in advance within the ODABA
dictionary in terms of structure and extent definition. In this case, the external file
can simply be accessed via the extent name, similar to any other extents in the
database.

The path to the file to be accessed is set in an option with the extent name.

The file type to be accessed has to be defined in the extent definition /access type)
as AT_BIN (flat files) or AT_EXTERN for extended self delimiter (ESDF), comma
separated (CSV), object interchange format (OIF) and xml files (XML). One more
type supported is directory access (AT_DIR) .

Accessing external files via extents is limited in the sense that specific settings as
head line option indicating self describing files or special delimiters are not sup-
ported. More flexible file access is provided via the openExtern() function, which
allows opening a collection based on an external file without referring to definitions
in the directory.

Open extern

Often, it is not very comfortable defining structure and property handles for exter-
nal files in the dictionary. Especially, CSV files often carry metadata in the head-
line, which contains sufficient information for extracting a file schema. Thus, prop-
erty handle supports an additional function for opening external data sources,
which are not defined in the dictionary. This allows accessing data ad-hoc and in
much simpler in many cases.

In order to access external files that do not have a file schema definition at all, ad-
hoc schemata can be created for semi-structured files as XML or OIF. In this case,

- 30 -

the file is analyzed and a file schema is derived from property names passed with
the data.

openExtern (const odaba::ObjectSpace &cObjectSpace, odaba::String

sFilePath, odaba::String sDefinitionFile, odaba::String sFileType,

odaba::AccessModes eAccessMode, bool bHeadline)

 - 31 -

2.3.1 Flat or binary files

Binary or flat files are files with a fixed data structure. Binary files can be consid-
ered as the most compressed format for data exchange. In contrast to other file
formats, binary files do not support subordinated collections.

There are several limitations in using binary files.

 Binary files always require a separate file definition (no headline definition
supported).

 Binary files do support arrays with fixed number of elements, only.

In contrast to all other external data formats, which are limited to ASCII data, bina-
ry files may contain any type of data.

In order to access flat files, a file description is required in the data base or has to
be passed explicitly to the Property::openExtern() function. In order to provide an
external schema definition, any of the supported definition formats might be used
(see Data Exchange schema)

When the flat file contains line breaks, those have to be defined explicitly in the
record structure definition for the file.

One might define weak typed binary files, in which case the data has to be provid-
ed in ASCII format and records have to be terminated by line breaks.

- 32 -

2.3.2 Comma separated format

CSV is a simple exchange format separating properties (fields) by field delimiters.
As field delimiter, tab (\t), newline (\n) or semicolon (;) might be used (but not
comma. In case of values containing one of those characters, values have to be
enclosed in string delimiters String delimiters are also required, when the value
contains string delimiters itself. In this case, string delimiters within the value have
to be escaped. (e.g. "character \" is a string delimiter"). The escape character (\)
will be removed before storing data.

CSV files contain any number of records (instances of a collection) terminated by
new line character (\n). New line characters within values enclosed in string delim-
iters are not counted as instance end. CSV instances support attributes and attrib-
ute arrays, but no references or collections.

Since CSV does not require any tags, it is an efficient way of exchanging flat data
files. On the other hand, it requires fields being defined in a correct sequence.
CSV files must not contain data of more than one extent or weak-typed collections.
Typically, CSV is used to pass complex data within an application. Thus, the Key
contains CSV structured instances when not requesting another format.

Furthermore, CSV files can be accessed in exportData() and importData() func-
tions (Property and ObjectSpace) or when opening external files by Proper-
ty::openExtern().

CSV files may carry the file or data exchange schema directly in the data file
(headline). The file or data exchange schema can also be defined in the dictionary
or passed separately in any file schema definition format.

Limited access to CSV files is supported by defining CSV extents in the dictionary
(access type AT_EXTERN). I this case, the file path is expected in an option with
the extent name. No head lines and no external file description are supported for
CSV extents.

In order to provide more flexible access to CSV files, a file description has to be
passed explicitly to the Property::openExtern() function. In order to provide an ex-
ternal schema definition, any of the supported definition formats might be used
(see Data Exchange schema)

 - 33 -

2.3.3 ESDF format

The Extended Self Delimiter File format is an extension of the CSV format. ESDF
files contain any number of records (instances of a collection) enclosed in paren-
thesis { ... }. Between properties and lines non or any number of line breaks might
be defined. In contrast to CSV, ESDF supports complex attributes and reference
collections with variable number of instances. Since ESDF does not provide prop-
erty names, all properties are interpreted by position.

Since ESDF does not require any tags, it is an efficient way of exchanging large
data files. On the other hand, it requires fields being defined in a correct sequence.
ESDF files must not contain data of more than one extent or weak-typed collec-
tions. Typically, ESDF is used to pass complex data within an application. Thus,
the Instance contains ESDF structured instances when not being defined with an-
other format.

Furthermore, ESDF files can be accessed in exportData() and importData() func-
tions (Property and ObjectSpace) or when opening external files by Proper-
ty::openExtern().

ESDF files may carry the file or data exchange schema directly in the data file
(headline). The file or data exchange schema can also be defined in the dictionary
or passed separately in any file schema definition format.

Limited access to ESDF files is supported by defining ESDF extents in the diction-
ary (access type AT_EXTERN). I this case, the file path is expected in an option
with the extent name. No head lines and no external file description are supported
for ESDF extents.

In order to provide more flexible access to ESDF files, a file description has to be
passed explicitly to the Property::openExtern() function. In order to provide an ex-
ternal schema definition, any of the supported definition formats might be used
(see Data Exchange schema)

Specification

ESDF has a simple BNF specification as described below. As line break, new line
(NL), carriage return (CR) or both are accepted after headline and between data
lines. Headlines are optional. File definitions (headline) might be also passed sep-
arately and in any other format.

New lines are not considered as instance separator when being defined within a
locator, an item set or an item block.

- 34 -

Rules:
StringData := Headline | Data | CSV // defined for

providing the bnf class name

Headline := fields

fields := field [field_ext(*)]

field_ext := sep field

field := [fname] [size] [sub_fields] [dimension] [source]

fname := name | string

source := '=' [path_ref]

path_ref := _null | path

size := '(' number ')'

dimension := '[' number ']'

sub_fields := '{' fields '}'

path := path_element [path_extension(*)]

path_extension := '.' path_element

path_element := name [parameter]

parameter := get_parm | provide_parm

get_parm := '(' value ')'

provide_parm := '[' value ']'

value := path | constant

CSV := csv_items

csv_items := [cvalue] [csv_item_ext(*)]

csv_item_ext := sep [cvalue]

cvalue := string | csv_string

Data := items

items := [item] [item_ext(*)]

item_ext := sep [item]

item := dvalue | locator | item_set | item_block

dvalue := string | svalue

locator := '[' dvalue ']' [item]

item_set := '(' items ')'

item_block := '{' items '}'

sep := ';' | '|' | '\t' | ','

_null :: 'NULL'

std_symbols ::= class(BNFStandardSymbols)

spec_symbols ::= class(BNFSpecialSymbols)

svalue ::= ref(spec_value)

csv_string ::= ref(spec_csv_value)

name ::= ref(std_name)

number ::= ref(std_number)

string ::= ref(std_stringn)

constant ::= ref(std_constant)

Data exchange schema

ESDF files may contain a headline defining the file or exchange schema. Since
headlines need not differ syntactically from data lines, the file definition must pass
the headline option in order to indicate, that an ESDF file contains a headline at
the beginning.

 - 35 -

When passing the exchange schema in the data file headline, the schema must be
defined completely in the first line. When passing en exchange schema in a sepa-
rate file, the data exchange definition may contain any number of line breaks.

Another way is defining the data exchange specification in the dictionary (resource
database).

Delimiters

ESDF defines a reserved set of delimiter characters. Delimiter characters must not
appear in values without being quoted. In contrast to CSV, ESDF requires addi-
tional delimiters for instances and collections.

Field delimiter

Characters ';', '|' and '\t' (tab) are considered as field delimiters. Field delimiters
may appear also mixed, i.e. also when creating an ESDF file using '\t' as field sep-
arator, values containing a ';' must be enclosed in string delimiters.

String delimiter

" and ' are considered as string delimiters. The starting string delimiter must be the
terminating delimiter, too. Starting a string value with ", the value may contain ' and
reverse. When starting string delimiters need to be coded within the string, those
must be preceded by an '\'.

'my name is"Paul"' // valid

'my name is\"Paul\"' // valid, same as above

'my name is\'Paul\'' // valid

"myname is 'Paul'" // valid, same as above

Instance delimiter

Instance delimiters '{' and '}' are used to define begin and end of complex (struc-
tured) data values. Instance delimiter may appear within value collections but also
outside collections. Instance delimiters are not required for base structure mem-
bers.

Collection delimiter

Collection delimiters '[' and ']' are used to define value or instance collections.

- 36 -

2.3.4 Object Interchange Format (OIF)

 - 37 -

2.3.5 ODABA XML format

