
- 1 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100101001

run

Document Generation

ODABA NG

- 2 -

run Software-Werkstatt GmbH
KÃ¶penicker Strasse 325
12555 Berlin

 www.run-software.com

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com

Berlin, September 2012

http://www.run-software.com/

- 3 -

Table of Contents
1Introduction ..4
2Generate documents from database content ..6

2.1Providing document templates ...7
2.1.1OSI templates ..7

2.1.1.1ASCII Templates ...8
2.1.1.2HTML templates ..11
2.1.1.3Template specifications ...12
2.1.1.4Template result ..16
2.1.1.5Debug templates ...18
2.1.1.6Creating documents by means of OSI templates18

2.1.2Open Document templates ...19
2.1.2.1Creating a document templates20

2.1.2.1.1Template expression ..21
2.1.2.1.2Fixed text and text references ..25
2.1.2.1.3Comments in document template ...26

2.1.2.2Generating OO documents ...27
2.1.2.3Debugging document templates29

2.1.3MS Office document generation ...31
2.1.3.1Call creating MS Office document35

2.2Calling document generation from a command line36

This document has been generated from database topics using Open Office docu-
ment generation.

- 4 -

1 Introduction

ODABA ODABA is an terminology-oriented database system that
allows storing objects and methods as well as causalit-
ies . As terminology-oriented database, ODABA sup-
ports complex object types (user-defined data types)
defined in a terminology model, which reflect application
relevant concepts.
ODABA applications are characterized by high flexibility.
In addition to object type or context hierarchies, ODABA
supports multifarious relations between object instances
(master and detail relations, relations between inde-
pendent object instances and others). This way, behavi-
or of objects in the real world can be represented con-
siderably better than in relational database systems.
ODABA supports event-driven applications concerning
the graphical user interface as well as the database
level. Thus, application design is tightly related to the
experts or customers problem, since it refers to the
same names and concepts as being defined by subject
matter experts. This enables ODABA to solve highly
complex jobs in administrative and knowledge areas.

Platforms ODABA supports windows platforms (from Windows 95
up to Windows 7) as well as UNIX platforms (Linux,
SUN Solaris). ODABA supports 64 and 32 bit technolo-
gies.
ODABA also runs well in heterogeneous client/server
environments or with Internet servers.

- 5 -

Interfaces ODABA supports several technical interfaces:

• C++, .Net as application program interface (this
allows e.g. using ODABA in C# or VB scripts
and applications)

• ODABA Script Interface (OSI) for accessing
data via a script language, which is similar to C#
or JAVA.

• Multiple storage support for using relational
databases for storing ODABA data

• XML for supporting data exchange with complex
data structures

• OIF (object interchange format), flat files and
ESDF (extended self delimiter fields) for access-
ing data provided in external file formats

• Document exchange support for importing or
exporting data from/to open office or Microsoft
office documents.

Tools ODABA provides a number of database maintenance
tools, but also development tools in order to provide ter-
minology model definitions, data model specifications,
application design and others.
To support just-in-time documentation, all ODABA tools
provide extended documentation facilities, which are the
base for generating system and WEB documentation,
but also online help systems.

- 6 -

2 Generate documents from database content

ODABA supports creating different kinds of documents:

• Creating LibreOffice documents (open document standard)
• Creating MS Office documents
• Creating HTML documentation

All kind of documents are based on document templates, which might be changed
by the user. Document templates (LibreOffice, MS Office) are provided as external
resources. HTML templates (OSI functions) are implemented in the ode.dev data-
base and might be changed there or passed as external OSI files.
Document generation might be called from a command line, in which case the
document template may define any kind of document for any type of object, but
also from within an application program.
The behavior and environment for calling document generating actions is de-
scribed in "Document actions" (see below). How to change document and HTML
styles is described in "Customizing document templates".

- 7 -

2.1 Providing document templates
Document templates are supported as OSI templates for creating simple text or
HTML files or as document template for generating Open Document documents.
The way of calling document generation from within an application program de-
pends on the document type. Generating Open Document Standard compatible
documents provides most flexible way of document generation. Calling HTML gen-
eration or any other type of document generation by means of OSI templates or
functions simply requires an OSI function call. MS Office document may be cre-
ated by calling MS Office Word and generating the document from within MS Of-
fice e.g. by means of VB Scripts.
In order to pass data from the application to the document template, appropriate
option variables may be set or written to an ini-file which will be passed to the ex-
ternal program call.

2.1.1 OSI templates
OSI templates are a specific way of defining a function. Usually, OSI templates are
used, when having a sort of text template, which is to be filled with data from the
database.
Since one can use the SystemClass::WriteResult() or File-
Handle::Out() functions in a OSI function, template functions are not really re-
quired, but are useful in many cases. In contrast to OSI functions, template func-
tions are easier to read and easier to write.
OSI templates support conditional text generation as well as embedded OSI ex-
pressions. One may call templates from within a template etc. The template result
will be generated as templates are called. Since one may access the template res-
ult at any time, one may also update the generated result during the generation
process.
OSI templates can be considered as inverse functions, but there are some restric-
tions compared with functions. The example below shows a way of converting an
OSI template into an OSI function. Since templates are just a simplified way of de-
fining text functions, one may also mix templates and OSI functions or create a
template result just by calling OSI functions.

- 8 -

Details for OSI template syntax are described in the Reference Documentation
OSI Template syntax.

$template string Test()$
Dear $if (sex == "male")$Mr. $else$Mrs. end $family_name$,
We just got your question concerning $product$, which you are using since
$buing_date$. We have forwarded your problem to
$responsible(0).first_name$\ $responsible(0).second_name$.
You will get an response during the next three days.
...
$return TemplateString$
end

// same template expressed as OSI function
function string Test () {
 WriteResult("Dear ",false);
 if (sex == "male") WriteResult("Mr. ",false);
 else WriteResult("Mrs. ",false);
 WriteResult(family_name,false);
 WriteResult(",",false);
 WriteResult("We just got your question concerning ",false);
 WriteResult(product,false);
 WriteResult("which you are using since ",false);
 WriteResult(buing_date,false);
 WriteResult(".",false);
 WriteResult("We have forwarded your problem to ",false);
 WriteResult(responsible(0).first_name,false);
 WriteResult(" ",false);
 WriteResult(responsible(0).second_name,false);
 WriteResult("You will get an response during the next three days.
\n...\n",false);

 return TemplateString;
}

2.1.1.1ASCII Templates
OSI templates can be considered as inverse OSI functions, but there are some re-
strictions compared with OSI functions. In order to distinguish code from text, for
inserting comments and for other reasons, some characters have been reserved
and have to be used with care when appearing in the text.
One may create any sort of text output using template functions. The only re-
served characters in a template are $ and \. When template text contains $ or \,
one needs to add a \ before, i.e. \$ or \\ in the text will be converted to $ or \ re -
spectively.

- 9 -

Fill characters
Blanks, new lines (0x0D0A or 0x0A) and tabs (0x09) are considered as fill charac-
ters. In some cases, fill characters are not displayed properly. Usually, all fill char-
acters between text and embedded expressions are considered as part of the text
constant.
This will also include a blank between first and family name (see example 1). Line
breaks or tabs between embedded expressions or at the beginning of the text are
also considered as fill characters to be displayed in the result (example 2).
For ignoring line breaks between embedded expressions one may use the line
connector \. Adding a "\" at the end of a line causes the template to consider the
next line as continuation of the current line. This also allows inserting line breaks in
the template text, which may increase the readability of the template (example 3).

// template text 1
 ...
 $responsible(0).first_name$ $responsible(0).second_name$
 ...
// --> generated OSI code
 WriteResult(responsible(0).first_name,false);
 WriteResult(" ",false);
 WriteResult(responsible(0).second_name,false);

// template text 2
 ...
 $responsible(0).first_name$
 $responsible(0).second_name$
 ...
// --> generated OSI text
 WriteResult(responsible(0).first_name,false);
 WriteResult("\n",false);
 WriteResult(responsible(0).second_name,false);

// template text 3
 ...
 This is a longer text constant to be displayed in the result \
 in a single line. To make the template more readable, we can \
 add "\\" in the template text before line break.
 ...

- 10 -

Fill character sequences
All new lines found in the template before and after text constants are considered
as text constants and included in the result. Thus, the template fragment
One may also add explicitly defined fill characters as \n, \t or \, which will have the
same effect. In order to write characters as \n to the output, control characters
have to be escaped by double backslash.

// Example 1: fixed text in template
 You will get an response during the next three days.
 ...
// will generate the following OSI function code
 WriteResult("You will get an response during the next three days.
\n...\n",false);

// example 2: explicit control characters
 You will get an response during the next three days.\n...\n
// will generate the same code as the example above
 WriteResult("You will get an response during the next three days.
\n...\n",false);

// example 3: write control sequences to output
 You will get an response during the next three days.\\n...\\n
// will generate the following OSI function code
 WriteResult("You will get an response during the next three days.
\\n...\\n",false);

Comments
Comments are line comments introduced by //. Comments can be placed at the
end of a line, only, i.e. any text after the comment-begin is considered as part of
the comment until the line end.
Comments within a text constant are not recognized as such but considered as
part of the text constant. Adding comments in a template is possible at the begin-
ning of the template or after embedded code or immediately after a fill character
sequence (example 1)
In order to append a comment at the end of a text constant, you have to insert an
explicit line break before the comment (example 2). For generating // sequences
as template text, one may use \/, which will be converted to // (example 3)

Example 1
 // this is a valid line comment (at beginning of template)
 This is part of the template text // and this also
 $Data$ // display current data - valid comment

Example 2
 This is part of the template text \n// after line end this becomes a
comment
 $Data$ // display current data - valid comment

- 11 -

Example 3
 This is part of the template text \/ generated as //
 $Data$ // display current data - valid comment

2.1.1.2HTML templates
In case of HTML templates, however, text included in the function requires special
treatment, because characters as < or > need to be converted. This is automatic-
ally done, when defining an HTML template as shown below:
When converting HTML templates to OSI functions, all text read from the database
is converted to HTML by replacing reserved characters (see below). The differ-
ence is in calling the SystemClass::WriteResult() function, which passes
true as second parameter to indicate HTML conversion.

 <template>
 <header> string Test() </header>
 <processing>
 <body>
Dear $if (sex == "male")$Mr. $else$Mrs. end $family_name$,
We just got your question concerning $product$, which you are using
since $buying_date$. We have forwarded you problem to
$responsible(0).first_name$ $responsible(0).second_name$.
You will get an response during the next three days.

 </body>
 $return TemplateString$
 </processing>
 </template>

// will be converted to
function string Test () {
PROCESS
 WriteResult(" <body>\nDear ",false);
 if (sex == "male")
 WriteResult("Mr. "",false);
 else
 WriteResult("Mrs. ",false);
 WriteResult(family_name,true);
 WriteResult(",\n",false);
 WriteResult("We just got your question concerning ",false);
 WriteResult(product,true);
 WriteResult(", which you are using\n since ",false);
 WriteResult(buying_date,true);
 WriteResult(". We have forwarded you problem to \n",false);
 WriteResult(responsible(0).first_name,true);
 WriteResult(" ",false);
 WriteResult(responsible(0).second_name,true);
 WriteResult(".\n You will get an response during the next three days.

\n </body>";
 return TemplateString;
}

- 12 -

Special characters
The rules for reserved template characters are the same as for ASCII templates,
i.e. you must escape all special characters ($ or n), which are supposed to appear
as such, in the fixed text.
Special HTML characters in the fixed text must be defined in an HTML conform
way (e.g. < for <). Transformations are done only for the text read from the data-
base.
In order to suppress HTML conversion, one may define an ASCII template instead.
In order to suppress HTML conversion partially, one may modify the generated
function code or define an explicit function.

New lines
New lines do not have any effect on the generated HTML page, but may make the
generated code more readable. The template does not create line breaks
 or
paragraphs <p> from new lines. Those must be defined explicit in the fixed text as
all the other HTML tags.

2.1.1.3Template specifications
In most cases, templates do have a PROCESS section, only. Templates may have,
however, also a VARIABLE section. ON_ERROR and FINAL sections are not sup-
ported for templates.

General structure
ASCII and HTML templates can be defined as shown in the example below
Note, that an HTML template must not contain the </process> sequence as
fixed text in the process section, since this will terminate the process section. This
problem can easily be solved by calling a separate ASCII template, which just pro-
duces the </process> sequence or by using > instead of > and < in-
stead of <.

- 13 -

In general, it is suggested to use ASCII templates rather than HTML templates.

// ASCII template
 $template string Test()$
 $VARIABLES$
 int count = 0;
 $PROCESS$
 ... template text
 END

// HTML template
 HTML templates look a little bit different like:
 <template>
 <header> string Test() </header>
 <variables>
 int count = 0;
 </variables>
 <process>
 ... template text
 </process>
 </template>

Template body
Template text (fixed text) can be entered in the template body (process section).
Template text contains fixed text and embedded code.
Fixed text to be displayed in the template output is any sequence of characters (in-
cluding fill characters as blanks or line breaks) except sequences enclosed in $...
$, which are called embedded code. There are three types of embedded code ex-
pressions.

Output expression

Output expressions are operands (usually database property names), which are
enclosed between $...$ (see example). Thus, one may enter template call for other
templates or operations of any complexity in an output expression, but no state-
ments terminated by semicolon.
The content of an output expression is directly written to the target string. In an
HTML environment, it is converted to HTML before.

$first_name$
$responsible(0).first_name$
$responsible(0).first_name + + responsible(0).second_name$ � �

- 14 -

Embedded code

Embedded code does not directly create output, but is executed as expression
code. Embedded code must be enclosed into ${...}$ (see example below).
Since code may contain WriteResult calls, code may also add data to the tem-
plate result. This is one way to suppress HTML conversion for special texts, which
have already HTML format.
Within embedded code one may refer to template variables defined in the variable
section, to object variables, parameters and global variables like in an ordinary
function.

${
 while (messages.next)
 WriteResult(message.text,false); // no HTML conversion
}$

Control sequences
Control sequences are special expressions to control the text generation. Control
sequences work similarly to the corresponding function constructs.

return

The return sequence is required, when the template is going to return a value as
defined in the template header. The operand for the return value defines the value
returned to the caller. No more text is generated after the return has been ex-
ecuted.

$return operand$

if else end

The if sequence defines a feature for conditional template generation: The else
block is optional, but the end must be defined in any case. Note that line breaks
after the condition become part of the fixed text and lead to line breaks in the tem-
plate result. Thus, sometimes line breaks must not be inserted:

// each line create a line break
$if condition$
 Text generated when condition is true
$else$
 Text generated when condition is false
end

// conditional text without line break
$if (sex == male)$Mr. $else$Mrs. end � �

- 15 -

Switch case end

The switch block is an enhanced feature for conditional processing, since it allows
defining any number of processing path. In contrast to function switch, template
switch provides alternatives and does not support a default block. As well as for if-
else, the end statement is mandatory.
In order to handle other (or default cases), the switch block may contain a de-
fault statement. The default statement is mandatory.

// switch by constants
$switch (hair_color)$
$case blue $� �
 Blue is not an accepted hair color. Use \ other\ , instead. � �
$case yellow $� �
 Yellow is not an accepted hair color. Use \ other\ , instead.� �
$default$
 $hair_color§ is a valid value
end

// switch by operands
$switch condition$
$case operand$
 Text generated when the case operand matches the switch
$case operand$
 Text generated when the case operand matches the switch
$default$
 Text generated for other cases
end

while and for

While and for allow defining loops over arrays or collections. Similar to the condi-
tional processing, an end statement is required in any case. One may also insert
embedded code to change the condition: The same way one may define for-loops
according to the for-syntax defined for OSI functions.

// simple while loop
$while messages.next $
 Message is: $messages.text$
end

// increase loop count within expression
${ rcount = 0; }$
$while rcount < 10 $
 Number is: $rcount$
 ${ ++rcount; }$
end

// for loop
$for rcount = 0; rcount < 10; ++rcount $
 Number is: $rcount$
end

- 16 -

Embedded code

In order to embed code within an OSI template one may use ${ statements }$
constructs. Each statement within the expression has to be terminated by semi-
colon (also single statements). in contrast to variable or operation path references
($operation$), which add the (return) value to the template result, embedded
code does not add anything to the template result string (except when calling
WriteResult() within embedded code).

// embedded code
${
 ph.next;
 ++rcount;
}$

2.1.1.4Template result
The template result corresponds to the output created by WriteResult. The
WriteResult function appends the text to the result string, i.e. it will collect the
output from several templates.

Global template string
Template strings are thread variables, i.e. they are created separately for each
thread. There is, however, only one template string for each thread, which can also
be accessed as global variable __template__result_
It is, however, not suggested to refer to the template result via the global variable
name, since the global variable name might be changed. A better way is referring
to the template result via the functions describes below.

VARIABLES
 global string __template__result__;

SystemClass support
The SystemClass provides some functions in order to support handling the tem-
plate result.

WriteResult

The WriteResult() function will append the data passed to the template string.
Non-string values are converted to string according to the common conversion
rules.
Write result supports converting data passed in the first parameter to HTML com-
patible data by converting HTML ^specific characters (e.g. < to < or & to &
etc.)

- 17 -

During document generation data is passed to the document converter, which also
converts Qt-HTML to Open Document standard. Qt-HTML is created when enter-
ing data in rich text edit control in the GUI frame work, i.e. most large text fields
may contain Qt-HTML formatted text.
WriteResult() will be called automatically when running OSI templates. One
may also call the function from within other OSI expressions.

// OSI
 WriteResult(data); // appends content of data to template
 WriteResult(data,false);// same as above
 WriteResult(data,true); // HTML convetion befor append data

Notes: When the function name is also a class member function it has to be pre-
fixed with the SystemClass scope.

Reset template result

The ResetResult() function will clear the template string. The application is re-
sponsible to reset the template string at the beginning or when terminating the pro-
cessing.

// OSI
 RestResult();
 MyTemplate/(; // run OSI template
 File.Out(TemplateString()); // write to file

Get template string

TemplateString() is a function that returns the template result as string value.
Calling TemplateString(), one may display the template result or write it to file.
One may also call TemplateString() in order to add data directly to the tem-
plate string or to reset the template string: The application is responsible to clear
data in the template string when no longer being used, e.g. by calling ResetRes-
ult().

// write template result to console
 Message(TemplateString);

// write template result to file
VARIABLES
 FileHandle file;
PROCESS
 file.open(path,AccessModes::Write);
 file.append(TemplateString());
 file.close();
 ...

// append data to template string
VARIABLES
 string &tsring &= TemplateString() // template string reference

- 18 -

PROCESS
 Message(tstring);
 tstring = '';
 Message(tstring);
 tstring += 'new value';
 Message(tstring);

2.1.1.5Debug templates
In order to debug templates, OSI_DEBUG option has to be set to YES (or true).
Since templates are executed similar to OSI functions, one may also set break
points in the template code. Since breakpoints are code, the most save way to
define a break point is using embedded code. Since breakpoints are allowed in
statements, only, one may add embedded code containing any stupid statement
and setting a break point for this statement (see example below).
Debugging templates may become a little bit complicate, since errors are detected
in the function generated from the template. Hence, the line numbers will not fit ex-
actly to the template position. Even templates containing big amount of expression
code may cause problems.
Those can be solved partially by viewing the system output, since when detecting
an error in the generated code, OSI automatically writes the generated code to the
system output.

$template void fragment$
here we will show the function result from ${# 1;}$$myFunction(ph)$.

2.1.1.6Creating documents by means of OSI templates
When running OSI templates, the result created by the template is written to a
thread-global variable. This variable might be accessed from within the template or
OSI function in order to write the result to a file (SystemClass::Tem-
plateResult()) When not creating the output file by the OSI template or func-
tion, the template result might be retrieved by the application (see example below).
In order to clear the template result, SystemClass::ResetResult() should be
called before calling the OSI template.

- 19 -

The example below shows a simple fragment for calling an OSI template (e.g. for
generating HTML documents).

bool ...fragment(Property &ph,odaba::String filename) {
odaba::String html_template_name;
// set option variables requested by templates
 if (ph.positioned())
 Option("ItemLoid") = ph.instanceLoid();

 html_template_name = GetHTMLTemplateName(); // provide HTML template
name
 ph.executeExpression("SystenClass::ResetResult()");
 ph.executeExpression(html_template_name);
// write to file:
ph.executeExpression("SystenClass::TemplateResult()").toString();
}

2.1.2 Open Document templates
Document template are an enhance OSI template feature for using OSI within
Open Document Standard documents. Several examples for document templates
have been provided with the installation in the template folder (..odaba/template un-
der MS Windows or /usr/share/odaba/template under Linux). When this directory is
not available, templates might be downloaded from
www.odaba.com/content/downloads/demos/DocumentTemplates.zip
In order to create document templates, the document has to support specific
styles, which are provided in OSI-DocumentTemplate.ott, which is also available in
the template directory (or .zip file). The SampleTemplate.odt file contains a list of
sample expressions for demonstrating template specifications for different tem-
plate types with comments explaining the usage.
Documents generated from document templates are accessible by LibreOffice, but
also by MS Office (with Open Document support).

http://www.odaba.com/content/downloads/demos/DocumentTemplates.zip

- 20 -

2.1.2.1Creating a document templates
Document templates are Open Document Standard documents (typically created
with LibreOffice). Document templates require a number of specific paragraph
styles, which must be available in the document template. Several styles are used
for marking different template elements:

• OSICode - OSI code paragraphs
• OSIComment - template comments
• OSIEnd - end of an OSI template expression or block
• OSIExpression - OSI function header not creating document text
• OSITable - Table expression supporting row iteration
• OSITableRow - Row expression for defining single rows in mixed tables
• OSITemplate - Document template header
• OSIVariables - Template variable section

The style specification does not matter, but style names have to be defined as
such. Moreover, list and graphic styles have to be provided in order to display em-
bedded graphics and lists, which might be part of Qt rich text data stored in large
text fields:

• ListDefaultBullet - display bullet lists
• ListDefaultLowerCase - display lists with lower case items
• ListDefaultUpperCase - display lists with upper case items
• ListDefaultNumbering - display lists with numbered items

• GraphifDefaultCenter - display centered graphics
• GraphifDefaultLeft - display left float graphics
• GraphifDefaultRight - display right float graphics

Template style specifications are provided in the SampleTemplate.odt, which might
be copied, but also in the OSI-DocumentTemplate.ott file, which may be used dir-
ectly for creating a new template. Style specifications might be changed as long as
style names are not touched.
Notes: Document templates have been tested using LibreOffice, only. It is sugges-
ted to create document templates with LibreOffice.

- 21 -

2.1.2.1.1 Template expression
Template expressions within a document template start with a template header
(similar to the function header for OSI functions). For the template header line (1)
OSITemplate has to be assigned as paragraph style. The end of the template is in-
dicated by an end statement. The paragraph style OSIEnd has to be assigned to
the end (2) statement.
Any text outside template definitions will be ignored and does not become part of
the generated document. Text after the template header line and before the end
line becomes part of the generated document.
Document templates have to start with a main template or expression. The name
of the main template has to be the same name as the template document name
(without extension). Hence, template document name must not contain spaces or
other special characters. One may also refer to a different entry point, which is
defined as template in the template document. When referring to another entry
point name, the entry point to the template must be declared when calling the tem-
plate.
Template expressions may refer to option variables, which have been set in the
configuration or ini-file or by the calling program. Option variables are referred to
by name enclosed in %...%.
In order to support function variables, template variables (3) may be defined simil -
ar to OSI function variables in the VARIABLES section. In contrast to OSI func-
tions, template variables do not require a special section, but the paragraph style
OSIVariables. Variables have to be defined immediately after the template header.
Variables must not be defined after first text or code line. As long as variables are
not defined as global variables, those are defined in the scope of the template ex-
pression, i.e. between header and end, only.
After variable definitions template text, text references and template code may be
defined. Defined fixed text (4) will be copied to the document with text formatting
as being defined in the template (what you see is what you get). In order to invoke
text from the database, operation paths (5) may be defined enclosed in $...$. For
displaying the text provided via the operation path the current text formatting as
being used for the operation path will be used. Any paragraph style except re-
served OSI... styles may be assigned to fixed text and operation path references
Code lines (6) within the template function have to be defined with paragraph style
OSICode. When defining code lined, no text will be generated from the code line. In
order to generate text
Several specific types of template expressions are supported in addition:

• Template function - describes a function within document template
• Table template - describes a table with several rows
• Row template - describes a row in a composed table

- 22 -

(1) void SampleTemplate ()
(3) global int count = 0;
(3) SET<HierarchyTopic> &topics = HierarchyTopic(%ItemName%);
(4) This is my fixed text
(5) $topic(0).definition.definition.characteristic$
(6) topic.SubTopicTable();
(2) end

Notes: Changing text formatting within an operation path reference may cause er-
rors in the generated document.

Template functions
Template expressions are used for executing a number of OSI statements. Often,
template functions are used for calling subordinated template expressions or for
calculating derived values.
Template functions start with a function header line, which requires the OSIExpres-
sion paragraph style. Template expressions are terminated with an end statement,
which requires an OSIEnd paragraph style.
Any spaces or text within a template function will be ignored. Code lines within the
template function have to be defined with paragraph style OSICode.

collection void DSC_Topic::SubTopicTable()
if (tryGet(0))
 if (sub_topics.count > 0)
 sub_topics.SubTopic1Table();
end

Table template
Table templates are used for displaying instances of a collection in table rows.
Table templates (1) start with a table template header line, which requires the OS-
ITable paragraph style. Table templates are terminated with an end statement (2),
which requires an OSIEnd paragraph style.
Table templates are collection templates and will iterate for the last row found in
the table definition. Table headlines (2) can be defined as first row(s) in the table.
All table lines except the last (3) one are considered as static lines and will appear
only once in the table. No text replacement will be done in static table lines, i.e.
static table lines may refer to fixed text, only. The last table line (3) will be repeated
for each instance of the collection referenced by the calling object.
A table template may contain an initial section before table begin, which will not it-
erate. Since no object instance is selected in the initial section (paragraph, head-
line), those may contain global, static or parameter data, only.
Code lines may be inserted before the first and after the last table row as well as in
table cells. Code lines within the table template have to be defined with paragraph
style OSICode. Code lines (4) immediately before and after the table will be ex-
ecuted for each table row generated for the last table row. Thus, this code can be
used for calling other table row templates in order to create complex tables. Table

- 23 -

templates may contain the table definition and expression code, but should not
contain text paragraphs or multiple tables.
In case of defining multiple row table templates, all rows are created for each in-
stance in the collection. Conditional rows can be created by using expression (see
example below)

(1) collection void DSC_Topic::SubTopic1Table()
(2) Title 1 Title 2
(3) §definition.name$ $definition.definition.characteristic$
(4) if (definition.definition.example.count)
(4) DSC_Topic::Example();
(4) sub_topics()->SubTopic2Table();
(2) end

Notes: Table templates should be marked as collection functions. Otherwise, tem-
plate call may fail, when no instance is selected in the calling property handle.

Control table line count

Usually, all instances will be printed to the table. In order to restrict the number of
lines to be printed, a filter might be set for the collection. One also may pass a
count (__count) to the table template. The parameter has to be defined an in-
teger (INT) in the table template headline and has to be set by the calling tem-
plate.
When defining a __count parameter in the template head line, generating table
lines starts with the instance currently selected in the collection. The __count
parameter contains the number of instances to be processed.
When the table template returns, the next instance after the last printed to the
table is positioned. When the end of the collection had been reached, no instance
is positioned in the collection.

persons.first(); // position first instance in collection
while (persons.positioned())
 persons.Table2(10); // print next ten lines as long as table returns
true
...
collection void Person::Table2(int __count) // table template header
...

Row template
Row templates are usually called from within a table template in order to add addi-
tional rows for the selected object instance. This allows creating complex tables
with different row formats. Row templates (1) start with a row template header line,
which requires the OSIRow paragraph style. Row templates are terminated with an
end statement (2), which requires an OSIEnd paragraph style.
The row (3) defined in the row template should fit into the table definition calling
the row template. Row templates are used for creating tables with different generic

- 24 -

rows. A row template should contain only one row, which fits into the table calling
the row template. Only the first row specification in the template will be considered
as row template. Additional rows or paragraphs will be ignored.
In order to call further row templates, code lines may be inserted before and after
the row as well as in row cells. Code lines (4) within the table template have to be
defined with paragraph style OSICode. Code lines (4) may be used for calling sub-
sequent row templates.

(1) void DSC_Topic::SubTopic2Table()
(3) $definition.name$ $definition.definition.characteristic$
(4) if (definition.definition.example.count)
(4) DSC_Topic::Example();
(2) end

- 25 -

2.1.2.1.2 Fixed text and text references
Templates typically refer to fixed text and text references. Moreover, one may use
template conditions or template iteration in order to create conditional or iterative
text output.

Fixed text
Fixed text will be copied to the target document using styles and local text format-
ting as being defined for the fixed text in the document. Any paragraph or text style
defined for the document template may be used for fixed text, except OSI styles,
which are reserved for marking OSI template elements. One may, however, refer
also to list and image default styles provided in the template.

Text reference
In order to refer to text data provided by the database, one may define text refer -
ences, which are operation paths enclosed in $...$. An operation path may refer to
a single text field, but also to an operation. When referring to an operation, the op-
eration result will be displayed. Operations referenced as text references should
return elementary data (string, number date etc.).
Values which are not string types are converted to string values. All string values
are converted to UTF8. Reserved XML characters as < and > are translated to cor-
responding XML values(> < etc).
Special support is provided for Qt rich text fields, which are usually stored in the
database when editing text in rich text edit controls (GUI framework). Text format-
ting of rich text edit fields is converted to Open Document Standard text formatting,
i.e. appropriate styles are selected or created when generating the document. .
When generating documents including Qt rich text edit fields, text formats and
styles used in the formatted text may conflict with styles used in the document
template. In general, paragraph styles are taken from the document template,
while local formats (spans) are translated to document styles as long as possible.
Document templates support unordered and ordered lists defined within a rich text
field as well as embedded graphics. Embedded graphics are copied to the docu-
ment's image folder. Tables in rich text fields are not yet supported. Also special
formatting options as line or block indent will be ignored. As long as rich text fields
do not use very sophisticated text formatting, they are converted nearly 1:1 to the
document.
When defining text references, only one style should be assigned to the text refer-
ence. Changing the style within the text reference may cause errors in the gener-
ated document.

$topics.topic(0).definition.name$
$topics.topic(0).GetExampleText()$

- 26 -

Conditional text output
In order to generate conditional text output, one may insert code lines defining the
condition. This may cause problems, since text after a code line always starts a
new paragraph. In order to create conditional text within a paragraph, template
conditions may be defined. Template conditions must not be marked as OSICode
and must not contain local formatting.
This is, however, rather sensitive, since any additional character as format inform-
ation etc. will destroy the template expression. Hence, it is suggested to call a tem-
plate expression, instead.

Dear $if sex == male$Mr.$else$Mrs.end $last_name$,

Comment: better solution
My name is $GetTitle$ $last_name$.

Comment: template expression
STRING GetFirstName()
if (sex == male)
 return ("Mr.");
else
 return ("Mrs. ");
end

Template iteration
In order to combine text elements within a text paragraph one may call template
while construct. Since this is difficult to read, because all statements have to be
written in one line, it is suggested to cal an OSI functions defined in the template,
instead. The same solution is suggested for switch blocks an other more complex
string computation.

My name is$while first_name.next$ $first_name$$end$ $last_name$.

Comment: better solution
My name is $GetFirstName$$last_name$.

Comment: template expression
STRING GetFirstName()
return (first_name[0] + ' ' +
 first_name[1] + ' ' +
 first_name[2]);
end

2.1.2.1.3 Comments in document template
Any text outside template definitions is considered as comment. In order to add
comments within template definitions, OSIComment style may be assigned to com-
ment paragraphs. Comment are completely ignored and will not be written to the
document, but also not to the template expression created from the document
template.

- 27 -

2.1.2.2Generating OO documents
In order to call LibreOffice document templates from a context action, a few option
variables have to be set before calling the function. Generating LibreOffice docu-
ments requires the OpenOffice library, which is provided as dynamic link library
with the ODABA installation.
The document generator is called via the SystemClass::CreateDocument()
interface function by using an OSI expression. In order to be executed correctly,
the function has to be executed with a property handle as calling object. In order to
call the function properly, the complete document path and the complete template
path have to be provided in internal option variables __DocumentPath and
__TemplatePath. It is up to the application to provide proper location and file
names.
Beside these mandatory option variables, usually a number of additional option
variables has to be set, which are referenced in the document template. Since
document templates are global functions, root object instance for the document
are usually passed as instance identifier (loid or key value) or as access path.
The example below shows two fragments for an implementation of a context ac-
tion for executing LibreOffice document generation.

- 28 -

// generate document in current process
bool ...fragment(Property &ph) {
// root object instance is selected in ph
// the following options are required by the document generatoin
interface
 Option("__DocumentPath") = GetDocumentPath(); // complete document path
 Option("__TemplatePath") = GetTemplatePath(); // complete template path

// set other option variables requested by the template
// ...
// running in current process
 ph.executeExpression("SystenClass::CreateDocument()");
}

// generate document in separate process
bool ...fragment(Property &ph) {
// root object instance is selected in ph

// create ini-file for CreateDocument
 fstream ini_file;
 ini_file.open ("test.ini", fstream::out | fstream::app);

 ini_file << "[SYSTEM]" << std::endl;
 ini_file << "DICTIONARY=" << Option("SYSDB").toString().data() << endl;

 ini_file << "[CreateDocument]" << std::endl;
 ini_file << "DICTIONARY=" << Option("SYSDB").toString().data() << endl;
 ini_file << "RESOURCES=" << Option("RESDB").toString().data() << endl;
 ini_file << "DATABASE=" << Option("DATDB").toString().data() << endl;
 ini_file << "ONLINE_VERSION=YES" << endl;
 ini_file << "ACCESS_MODE=Write" << endl;
 ini_file << "NET=YES" << endl;
 ini_file << "ODABA_ROOT=" << Option("ODABA_ROOT").toString().data() <<
endl;
 ini_file << "CTXI_DLL=" << Option("CTXI_DLL").toString().data()<< endl;
 ini_file << "TRACE=" << Option("TRACE").toString().data() << endl;
 ini_file << "DSC_Language=" << Option("DSC_Language").toString().data()
endl;
// create option variables for template options
 ini_file.close();

 odaba::String path(Option("ODABA_ROOT"));
 path += "/CreateDocument.exe";
// depending on template reqirements additional optione might be set
 ph.instanceContext().executeProgram(path,"test.ini",GetTemplatePath(),G
etDocumentPath());

 return true;
}

- 29 -

2.1.2.3Debugging document templates
There are several reasons for errors when specifying document templates. This
chapter explains typical error cases and different ways to solve the problem.
Since Document templates are converted first to OSI templates, which, again, are
translated to OSI functions, error lines reported while running the template refer to
OSI function lines rather than to document template lines. This may cause addi-
tional problems when trying to locate errors.
In order to avoid this problem, it is suggested to implement larger OSI functions in
the resource database. The OSI functions may be checked before running, which
reduces the risk of errors. This, however, is not possible for document templates of
any kind. Hence one should try to reduce the code lines in document templates in
order to keep templates transparent.

Names for document templates and expressions
When defining document templates as external resources, naming conflicts may
easily happen, when calling the document template not via external program call
but via internal function call. In order to optimize OSI function loading, OSI func-
tions will be cached by the dictionary when being loaded. This will improve the per-
formance, when calling document templates several times.
When the application generates different documents referring to global or class
templates with the same name, loading the second document template will fail,
since an OSI expression with the same name has already been loaded.
In order to reuse OSI functions, which are referenced in several templates, OSI
functions might be implemented in the resource database. One cannot, however,
store document templates in the resource database. Hence, document template
names should be prefixed in order to obtain unique template names.

Syntax errors
Syntax errors are detected while converting the document template into an OSI
template, while translating OSI templates into OSI functions and while loading OSI
functions to the dictionary. In order to detect errors, it is suggested running Cre-
ateDocument.exe. When a syntax error has been detected, the console output
will list the OSI function or template expression, which has been failed. Below the
error message, the converted OSI template or function is listed, which usually al-
lows to locate the problem (see example below).

- 30 -

Creating Document

2012-01-26 19:46:00 - Running L:\odet\CreateDocument.exe with:
 ini-file: l:\opa\tpl\ReferenceDocu.ini
 document:
 template:
Loading document template ... SOS Error :
Error at line 9, column 1
No match for 'basic_stmt' at: ... }$
 in: istatement
 in: statement
 in: block
 in: comp_expr
 in: imbedded_expr
 in: templ_string
 in: templ_text
 in: t ...

$template void ODC_Module::ReferenceDocuClasses()$
<text:h text:style-name="Heading_20_2" text:outline-level="2">
 Implementation classes
</text:h>

${
classes()->ReferenceDocu()
}$
END

Invalid operation
Referring to unresolved operation names is a typical error, which is rather easy to
locate. Error template name, class and line causing the problem are listed in the
console output (see below).

Creating Document

2012-01-26 20:30:29 - Running L:\odet\CreateDocument.exe with:
 ini-file: l:\opa\tpl\ReferenceDocu.ini
 document:
 template:
Loading document template ... Generate document ... DEBUG>PROCESS
DEBUG>run
-- Error in: collection void SDB_Member::ReferenceDocu(STRING title)
 at line 14, column 1: RDTopicTeyt(DataTypeCString);
 reason: operand or operation 'RDTopicTeyt' not defined in:
SDB_Attribute

Detecting malfunctions
In order to locate malfunctions one may run document generation in OSI debug
mode. In order to activate the debug mode, OSI_DEBUG=YES has to be added to
the [CreateDocument] section in the ini-file before calling CreateDocument.
In order to break at certain positions, one may insert break points in the document
template in two different ways. In order to set a break point within a code line (with

- 31 -

paragraph style OSICode) one may simply insert an # character at first position of
the code line. In order to set a break point within fixed text references, a statement
has to be inserted, since break points can be set for statements, only. Usually, one
simply inserts a dummy statement as ${# 1;}$, which contains a break point and
debugging will stop at the marked text position.

Comment: break point in OSI code line
collection void SDB_Resource::RDTopicText(STRING types)
if (positioned)
if (resource_ref.tryGet(0))
 resource_ref.description()->RDTopicText2(types);
end

Comment: break point in fixed text
2.3.1 sys_ident - ${# 1;}$
$resource_ref(0).description(0).definition.name$

Document error
Somtimes, the document may contain invalid characters or unbalanced XML tags.
When loading the document fails, LibreOffice write line number and position,
where the error occurred. In order to locate the invalid text, one may change the
extension for the document to .zip and browse the zip file content.
In the zip-file directory, the is the content.xml file, which contains the invalid line.
Just open the content.xml file with a text editor supporting line numbers and locate
the reported position. Usually, content errors are obvious when editing the content
file.

2.1.3 MS Office document generation
A typical way for generating MS Office documents is using MS Word macro fea-
tures. The Terminus application provides document generation actions, which
may work, however, only when the required document templates have been in-
stalled. Document templates are not part of the ODABA installation and might be
modified or rewritten according to specific requirements.
Typically, MS Office document templates refer to an initial document, which
provides style definitions and title page for the document to be generated. This
might easily be replaced by a more appropriate one. Moreover, styles might be
changed, but not the style names, which are referred to from within the macros.
Available macros and its resources are described below.
In order to support scripting languages as MS VB Script, ODABA .Net libraries
have to be extended by a wrapper library. The .Net project and other resources re-
quired for MS document generation are available at following locations:

• MS Word helper functions
http://www.odaba.com/content/downloads/demos/odabaWordHelper.zip

• Document template

http://www.odaba.com/content/downloads/demos/odabaWordHelper.zip

- 32 -

http://www.odaba.com/content/downlads/demos/DocumentTemplates.zip)
Those are just demos for schowing, how to get out some documents from an
ODABA database. On the other hand, these demos are used by RUN for generat-
ing documentation from Terminus specifications. Usually, document templates are
installed in the template directory (/usr/share/odaba/template under Linux
and ...odaba/template under MS Windows).
Document templates are provided as .dot files for reference documentation (Refer-
enceDocu.dot), Terminology Model documentation (TerminologyModel.dot) and
hierarchical topic documentation (TopicsDocu.dot). Document style definitions are
provided for these templates in .doc files with appropriate names.
Notes: MS Office document generation by means of VB Script macros is one pos-
sible way, but it is rather slow and difficult to maintain. A better way is using Open
Document templates, which generate documents that are accessible in MS Office
as well as in LibreOffice.

MS Word helper functions
The MS Developer Studio 2010 solution provides an ODABA wrapper supporting
ODABA database access and a few MS Word function for opening and closing
word documents. Before compiling the solution, references for odaba-net.dll and
dotnet-connector.dll have to be updated.
The wrapper library works with all MS Office versions from office 1997-2003 up-
wards. It has not been tested with older versions.
When opening a document (ODocument::Open()), an ini-file is required, that
contains document and template name. The ini-file is, usually, generated when
calling MS Word macros from within Terminus. Otherwise, an ini-file has to be
provided, which contains a path the document to be created (option name passed
in docname) and a path for a template for initializing the document (option name
passed in templatename).
Two more functions (ODocument::Find() and ODocument::ReplaceText())
are available for convenience.
The odabaDBInterface file provides the ODABA database access function wrapper
for accessing the database (ODatabase), for property handle support (OProp-
erty) and for value access (OValue).

Terminology model template
The terminology model template provides a document template (TerminologyMod-
el.dot) for generating an MS Word document for a terminology model defined in
Terminus. (context menu for a terminology model in the Models tree Generate
Documents/Generate Word). The action generates an ini-file and calls the word
macro from the location as being defined in option Options.Documenta-
tion.HTWordTemplate.

http://www.odaba.com/content/downloads/demos/DocumentTemplates.zip

- 33 -

One may also start the macro without running Terminus, but the ini-file has to be
provided manually, in this case. An example for an ini-file is shown below (remove
comments before running the ini-file).
Before running the template, one might update the initializing document Terminolo-
gyModel.doc in order to get a more appropriate document design. The document
delivered is designed for generating ODABA documentation and includes specific
title and RUN logo.

[SYSTEM]
DICTIONARY=odaba\ode.sys - ODABA system dictionry

[DOCU]
DICTIONARY=odaba\ode.sys - ODABA system dictionry
RESOURCES=odaba\ode.dev - ODABA resource database
DATABASE=sample.dev - my development database
ONLINE_VERSION=YES
ACCESS_MODE=Write
NET=YES
ODABA_ROOT=odaba
CTXI_DLL=AdkCtxi
TRACE=... logfile directory
DSC_Language=English
DOC_PATH=odaba\Projects\Sample\doc\TM.doc - final document location
DOC_TEMPLATE=odaba\template\TerminologyModel.doc - document
initialization
START_TOPIC=TM - terminology model selected

- 34 -

Hierarchy topics template
The hierarchy topics template provides a document template (HierarchyTopic-
sDoc.dot) for generating an MS Word document for a topic hierarchy defined in
Terminus. (context menu for a terminology model in the Themes tree Generate
Documents/Generate Word). The action generates an ini-file and calls the word
macro from the location as being defined in option Options.Documenta-
tion.HTWordTemplate.
One may also start the macro without running Terminus, but the ini-file has to be
provided manually, in this case. An example for an ini-file is shown below (remove
comments before running the ini-file).
Before running the template, one might update the initializing document Hier-
archyTopicsDoc.doc in order to get a more appropriate document design. The doc-
ument delivered is designed for generating ODABA documentation and includes
specific title and RUN logo.

[SYSTEM]
DICTIONARY=odaba\ode.sys - ODABA system dictionry

[DOCU]
DICTIONARY=odaba\ode.sys - ODABA system dictionry
RESOURCES=odaba\ode.dev - ODABA resource database
DATABASE=sample.dev - my development database
ONLINE_VERSION=YES
ACCESS_MODE=Write
NET=YES
ODABA_ROOT=odaba
CTXI_DLL=AdkCtxi
TRACE=... logfile directory
DSC_Language=English
DOC_PATH=odaba\Projects\Sample\doc\MainTopic.doc - final document
location
DOC_TEMPLATE=odaba\tpl\HierarchyTopicsDoc.doc - document initialization
START_TOPIC=MainTopic - start topic in the topic tree

- 35 -

2.1.3.1Call creating MS Office document
In order to call creating an MS Office document, MS Word has to be invoked.
Since the technology for creating MS Office documents is based on MS Word
macros (VB Script), the template document has to be called and executed. Since
this is a different process, an ini-file has to be created and passed to the MS Word
template (macro).
All information requested is passed via an ini-file, which is usually hard-coded in
the document template macro. The document template examples provided in the
tpl directory of the installation folder shows how to open a database by means of
an ini-file.
When calling an MS Office template (.dot), the location for the template file has to
be passed to the function call (GetTemplatePath() is just a symbolic function
call in the example, which returns the complete path for the document template
file). Other option file variables as location for output file or root object instance for
document have to be set in additional option variables as requested by the docu-
ment template.

// generate document in separate process
bool ...fragment(Property &ph) {// root object instance is selected in ph
// create ini-file for CreateDocument
 fstream ini_file;
 ini_file.open ("test.ini", fstream::out | fstream::app);

 ini_file << "[SYSTEM]" << std::endl;
 ini_file << "DICTIONARY=" << Option("SYSDB").toString().data() << endl;

 ini_file << "[DOCU]" << std::endl;
 ini_file << "DICTIONARY=" << Option("SYSDB").toString().data() << endl;
 ini_file << "RESOURCES=" << Option("RESDB").toString().data() << endl;
 ini_file << "DATABASE=" << Option("DATDB").toString().data() << endl;
 ini_file << "ONLINE_VERSION=YES" << endl;
 ini_file << "ACCESS_MODE=Write" << endl;
 ini_file << "NET=YES" << endl;
 ini_file << "ODABA_ROOT=" << Option("ODABA_ROOT").toString().data();
 ini_file << endl;
 ini_file << "CTXI_DLL=" << Option("CTXI_DLL").toString().data()<< endl;
 ini_file << "TRACE=" << Option("TRACE").toString().data() << endl;
 ini_file << "DSC_Language=" <<Option("DSC_Language").toString().data();
 ini_file << endl;
// create option variables for template options
 ini_file.close();

 odaba::String path(Option("ODABA_ROOT"));
 path += "/CreateDocument.exe";
// depending on template reqirements additional optione might be set
 ph.instanceContext().executeShell("open",GetTemplatePath());
 return true;
}

Notes: In the example above, the the document template has to "know", where the
ini-file has been stored.

- 36 -

2.2 Calling document generation from a command
line

In order to start document generation from a command line, CreateDocument
may be called:
...odaba/CreateDocument.exe ini_file [template] [document] [-q] [-h] [-p:type]
The configuration or ini-file contains the data source definition as well as specific
options for running the document template. Especially options referred to by the
template might be set in the ini-file (see example below). Data source definition
options are described in Data Source Options. Propgramm parameters Docu-
mentPath and TemplatePath might be set instead of passing document and
template parameters Template options (e.g. Collection and ItemName) are
option variables referred in the document template.
Command line document generation is rather helpful in order to detect document
template options. In order to debug a document template, the OSI_DEBUG option
has to be set in the [CreateDocument] section of the ini-file (OSI_DEBUG=YES).
Template files are internally converted into OSI template expressions. In order to
check the generated OSI code, OSI templates may be stored to a file. The path
(complete file path) for storing generated OSI templates has to be passed in Op-
tions.Documentation.TemplateOutput.

[SYSTEM]
DICTIONARY=L:\adk\ode.sys

[CreateDocument]
; data source specification
DICTIONARY=L:\adk\ode.sys
RESOURCES=L:\adk\ode.dev
DATABASE=L:\opa\opa.dev
ONLINE_VERSION=YES
ACCESS_MODE=Write
NET=YES
TRACE=e:\temp\reinhard
DSC_Language=English
; program environment
ODABA_ROOT=L:\odet\
CTXI_DLL=AdkCtxi
; debug options
OSI_DEBUG=YES
Options.Documentation.TemplateOutput=temp/ootemplate.osi
; program parameters
DocumentPath=L:\opa\doc\odabagui.odt
TemplatePath=l:\opa\tpl\ReferenceDocu.odt
; template options
Collection=ODC_Project
ItemName=odabagui

file:///N:/v11/odaba/documents/opa/HierarchyTopics/DB_option_list.html

