
- 1 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100101001

run

ODABA HTTP server

ODABA NG

- 2 -

run Software-Werkstatt GmbH
Winckelmannstrasse 61
12487 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, January 2022

- 3 -

Table of Contents
1 ODABA HTTP server...5

2 HTTP requests...8

2.1 GET request..9

2.2 PUT request..11

2.3 PATCH request..12

2.4 POST request..13

2.5 DELETE request...14

3 OSI POST Request..15

4 QUERY POST Request..18

4.1 Running queries..19

4.2 GET Query..20

4.3 OSI query..22

4.4 PUT query...24

4.5 PATCH query...26

4.6 DELETE query..27

5 OHTTP Mapping Tool (HTTPMapper)...28

5.1 Create query definition..30
5.1.1 Assign source path..30
5.1.2 Create field mapping...31

5.2 Test query definition..32

6 Error handling..33

6.1 Internal termination codes...33

6.2 HTTP error codes..34

7 Symbol reference..36

7.1 location - HTTP URL...37

7.2 body - request data for HTTP requests...39

7.3 body - request data for OSI POST..40

7.4 Request result (response)...41

7.5 Body for QUERY requested..42

7.6 Values, formats and encoding...43

8 Testing HTTP requests..44

8.1 Test with internally called server..46

- 4 -

9 Database model for ODABA sample database...47

- 5 -

1 ODABA HTTP server

The ODABA HTTP server is a mean of communication with an ODABA database
via HTTP internet protocol. When starting the server, a data source definition has
to be passed to the server via configuration or ini-file. Usually, the server runs as
daemon (Linux) or as Windows service. In order to debug server functions, one
may also execute the server as console program.

OHTTPServer ini-file port (console program)
OHTTPDaemon ini-file port (Linux daemon)
OHTTPWinServer ini-file port (Windows daemon)

The configuration or ini-file defines the data source. The port number defines the
communication port.

The OHTTP server acts as a kind of database driver and should not be accessible
directly via the internet. It is suggested to communicate with the internet via a
back-end server. This allows performing required authentication, storing prede-
fined queries or update procedures, which could be referenced by the application
via simple URLs with a proper set of parameters e.t.c.

Examples provided in the document refer to the data model of the ODABA Sample
database (see appended ODL definition).

The OHTTP server supports GET, POST, PUT, PATCH, DELETE and OSI POST
requests. Since ODABA databases provide several extended database features,
the semantic of POST, PATCH and PUT had to be changed slightly. Differences
are described in documentation chapters for these request types. Operations sup-
ported by the server have to be defined explicitly in the configuration or ini-file
passed to the server call.

Syntax elements used in different commands are described in detail in chapter
Symbol references. Most syntax elements are JSON compatible.

Port number

The number of the communication port must be appended to each HTTP request:

server:port

This allows running servers for different databases by using different port num-
bers.

- 6 -

Configuration or ini-file

The configuration (xml) or ini-file defines the data source for database access in-
dependent on the kind of server called. The section or element name for the data
source definition must be OHTTPServer. More details about data source defini-
tions and ini-files are available in ODABA documentation (Data Source Definition).

In order to allow HTTP operations, the option ALLOW has to be defined in the
OHTTPServer section.

[OHTTPServer]
...
ALLOW=op_list

op_list - is s list of operations (request types) to be supported. One may define
ALL or a list of supported operation names separates by semicolon: GET; PUT;
PATCH; POST; DELETE; QUERY and/or OSI. Option and operation names are not
case sensitive. Spaces between names are not allowed.

In order to request authentication, the configuration or ini-file must contain an Au-
thentication option in the OHTTPServer section:

[OHTTPServer]
...
Authentication=type[;function]

type - is the authentication type. Currently, the only authentication type is basic
or none (case insensitive). Passing an invalid authentication type will cause an er-
ror while starting the server.

function - is the name of an OSI function for checking user name and password.
The default function name is Authenticate:

Authenticate(string user, string password)

In order to call another function, the function name may be appended after type
separated by semicolon. When referring to a static class function, function must
be defined as scoped name (e.g. Person::Login). The function must receive
user name and password as parameter.

The function is is called for application specific user and password checks. The
authentication function with the default or passed name has to be defined in the
resource database or OSI library directory.

http://www.odaba.com/content/documentation/odaba/#opa/HierarchyTopics/DB_Data_source.html

- 7 -

; the system section defines the system database
; containing error messge definitions
[SYSTEM]
DICTIONARY=/usr/local/odaba/share/ode.sys

; data source definition for accessing Sample.dat
[OHTTPServer]
DICTIONARY=~/Sample/Sample.dev
RESOURCES=~/Sample/Sample.dev
DATABASE=~/Sample/Sample.dat

; access mode should be Read in order to prevent database from
; being updated
ACCESS_MODE=Write
SHARE=YES
ONLINE_VERSION=YES

; allowed operations
ALLOW=GET;PUT;POST;OSI

; Authentication
Authentication=basic

- 8 -

2 HTTP requests

HTTP Requests may be send to OHTTPServer as GET, PUT, PATCH, DELETE,
POST or OSI (POST) requests. For retrieving data from the database the GET re-
quest is used. Special update requests are supported by PUT,POST and PATCH
request type. Deletion of database instances becomes possible by means of
DELETE requests. Extended features are provided by the OSI POST request. Re-
quests have the following common format:

http://server:port/location[?parameter]
[body]

location - Data to be accessed or updated. The syntax of location is described
in detail in Symbol Reference / location - HTTP URL.

parameter - Several request types support parameters, which are well-defined
keywords or parameters for controlling the behavior of the request. Supported pa-
rameters depend on request type.

body - For all HTTP requests except GET and DELETE, data may be passed in a
body, which is, usually, interpreted as update data. Update data contains data for
properties in location to be updated.

The body passed to the request may contain data for one or more properties (data
items) in a JSON string as values.

values may be a single elementary value (number or string), but also a com-
plex object or array (collection). Details for values are described in Symbol
reference / Values, formats and encoding.

In case of collection source property, body data may be used also for locating an
instance. When a collection URL has been passed in location, the server tries
to locate an instance in the collection via values for key component properties
passed in body (POST). This allows accessing instances with multiple key compo-
nents.

The response to any request is a JSON string (values - UTF8 encoded), which
contains either response data or an error message (see Symbol reference / Re-
quest result (response)).

- 9 -

2.1 GET request

The GET request is passed in the URL in location (see Symbol reference / lo-
cation - HTTP URL).

location - is the part of URL after server and port specification. It defines an ac-
cess path for the source property that addresses an elementary data item, an ob-
ject instance (complex data type) or a collection or array of instances. When the
source property is a collection or an array, all instances in the source property are
returned in the response.

The source property may also refer to a function name, as long as the function
called does not require parameters. In this case, the response contains the func-
tion result. Functions may be odaba::Property functions, but also OSI func-
tions implemented in the class of preceding property's data type.

An error description is returned as JSON object (see Error handling) in case of
key conflicts or other error(s) in the request definition.

// simple GET requests
// get all children of a person
http://127.0.0.1:8888/Person::Persons/P123/children

// get person LOID
http://127.0.0.1:8888/Person::Persons/P123/instanceLoid

// get number of employees for first company
http://127.0.0.1:8888/Company/0/employees/*/count

Response to GET request

The GET request returns a JSON object (syntax of object and other syntax el-
ements referenced here is described in chapter Symbol reference / Values, for-
mats and encoding. In case of error, a string_value is returned containing an
error message. The response for a successful GET request is a JSON object
with one named_value:

{ name: values }

name - is the name of the source property in location. In case of elementary
source property (elementary attribute, BLOB, MEMO), values is a value, i.e. a
string, number or true or false.

In case of a collection source, values is an array.

{ name: [object, ..., object] }

When location refers to an instance, values is a single object.

{ name: { named_value, ..., named_value } }

- 10 -

Within returned objects, each name is a property name as defined for the com-
plex data type of instance and all its base types.

values for collection properties within an object return an array of URL in-
stances or an empty array, when the collection is empty:

name: [{ url: LOID/number },...,{ url: LOID/number }]
name: []

Array attributes within an object return a values array:

name: [values,...,values]

Complex data type attributes within an object return an object.

name: { named_value,...,named_value }

More details for values are described in Symbol reference / Values, formats
and encoding.

// get number of employees for first company
http://127.0.0.1:8888/Company/0/employees/count returns:
{ count: 485 }

// Get person's children
http://127.0.0.1:1234/Persons/ID123/children returns:
{ children: [
 { pid: "P123" name: "Miller", first_name_0: "Paul",
 first_name: ["Henry", "", ""], birth_date: "1966-11-11",
 sex: "male", married: false,
 income: 2500.00, age: 52, children_income: 3807.22,
 notes: "this might be a very long text in C-string format\n",
 address: [{ url: LOID/12346127 }],
 children: [
 { url: LOID/12346000 },
 { url: LOID/12346002 }],
 parents: [{ url: LOID/12346001 }] ,
 employee: []
 }, { ... next child instance }, ..., {...}
] }

- 11 -

2.2 PUT request

A PUT request is used to create new or update existing instances addressed in
location by passing appropriate data in a body. The PUT request body con-
tains data to be stored.

When an instance already exists at required location, properties of the existing
instance referenced in body will be updated, when replace is passed as param-
eter. Properties of an existing instance not referenced in the body are reset to
their initial state. In order to prevent single properties in existing instances from be-
ing reset, one should use PATCH rather than PUT.

In case of a collection source (no locator passed), a new instance is inserted/ap-
pended to the collection when the collection is unordered or ordered by __AU-
TOIDENT (auto-number). Otherwise, collection sources will cause an error.

location - is the property source which should address a single (not existing) in-
stance (see Symbol reference / location - HTTP URL). Since PUT is creating a
new instance, the source property for PUT must not be an elementary source
property. Usually, the source property in the PUT location refers to a non exist-
ing instance. PUT first tries to insert the new instance referenced in location be-
fore updating properties with data passed in body.

body - is a JSON object or an object array passed with the request, which
contains name/value pairs for properties to be updated and data to be stored (see
description in Symbol reference / body - request data for HTTP requests).
Properties passed in body must refer to attributes, MEMO or BLOB properties.

replace - In case of passing the replace parameter, an instance that already
exists will be updated. Otherwise, the request terminates with an error message.

When terminating normally, PUT returns following response:

 created - when a new instance has been created
 updated - when data has been replaced

The identifying key value for new instances should be passed in the PUT loca-
tion (part of URL). When passing unique key component values in the body,
those should precede all other attributes and references.

An error description is returned as JSON object (see Error handling) in case of
key conflicts or other error(s) in the request definition and no changes are made.

- 12 -

2.3 PATCH request

A PATCH request is used to partially update an existing instance addressed in lo-
cation by passing appropriate data in a body. The PATCH request body con-
tains data to be stored. When no instance exists at required location, a new in-
stance is created, when insert has been passed as parameter. Otherwise, the
request returns an error.

location - is the property source (see Symbol reference / location - HTTP
URL), which must address a single instance or an elementary property (attribute,
MEMO or BLOB). Since PATCH is, usually, updating existing instances, location
must refer to an existing instance. PATCH first tries to locate the instance refer-
enced in location before updating properties with data passed in body.

body - is a JSON object or value, which contains a value or name/values
pairs for properties to be updated and data to be stored (see body definition in
Symbol reference / body - request data for HTTP requests). Properties passed
in body must refer to attributes, MEMO or BLOB properties.

insert - when passing the parameter insert (update or insert), instances are
created when not yet existing. When not being passed and no instance exists at
required location, the request fails.

When location refers to an elementary property, the data (value) passed in
body is stored to the property. When location refers to an array attribute, body
should contain a value array and values are stored according to position in the
array. Attribute elements not referenced in the value array (less values than at-
tribute elements) remain unchanged. Passing too many values will cause an error.

When location refers to an object instance, the data passed in body must be
an object containing name/values pairs. Names must refer to property names
defined for the object. Properties not referenced remain unchanged. Passing null
as value will reset the property value to its initial state. Undefined property names
will cause an error.

When terminating normally, PATCH returns following response:

 updated - when data has been updated successfully
 created - when a new instance has been created (insert passed)

The identifying key value for instances to be created should be passed in the
PATCH location (part of URL). When passing unique key component values in
the body, those should precede all other attributes and references.

An error description is returned as JSON object (see Error handling) in case of
key conflicts or other error(s) in the request definition and no changes are made.

- 13 -

2.4 POST request

A POST request is used to partially update existing instances at location ad-
dressed by passing appropriate data in a body. In contrast to PUT or PATCH, post
allows inserting/updating multiple instances passed in a JSON array in body.
Before inserting or updating instances, POST tries to locate instances by means of
key attributes passed in body objects. In contrast to PUT and PATCH, POST
does not allow updating related references. In order to update references, addi-
tional POST request have to be submitted.

location - is the property source which must address a collection property (see
Symbol reference / location - HTTP URL). Since data for locating instances is
passed in body, addressing an instance or elementary property in location will
cause an error.

body - is a JSON object or array (of objects) which contain name/values
pairs for key component attributes and properties to be updated (see body defini-
tion in Symbol reference / body - request data for HTTP requests). Properties
passed in body must refer to attributes, MEMO or BLOB properties.

noreplace - In case of passing the noreplace parameter, an instance that al-
ready exists, will not be updated.

noinsert - In order to avoid creating new instances, noinsert may be passed
instead.

Since POST first tries to locate an instance by main key attribute values passed in
the object, POST does not allow changing main key attribute values. In order to
update main key attribute values, one should use PATCH.

When creating or updating instances conflicts with parameter passed, the request
terminates with an error and no changes are made.

Properties of an existing instance not referenced in the body remain unchanged.
Passing null for a property will reset the property value to its initial state.

When terminating normally, POST returns following response:

 updated - when data has been updated successfully
 created - when a new instance has been created

When creating new instances, unique key component values for each instance
have to precede all other attributes and references in the JSON instance (part be-
tween { ... }).

An error description is returned as JSON object (see Error handling) in case of
key conflicts or other error(s) in the request definition and no changes are made.

- 14 -

2.5 DELETE request

In order to remove an instance from a collection or to delete it completely, the
DELETE request may be used:

location - is the property source (see Symbol reference / location - HTTP
URL), which must address a single existing instance. Referring to instances via
LOID is not allowed for a DELETE request.

Whether an instance is removed from the collection or deleted, depends on the
ownership status of the source property. Instances in owning collections are
deleted, always.

delete - In case of passing the delete parameter, an instance is completely
deletes also when not being owned by the source property.

When terminating normally, DELETE returns following response:

 deleted - when data has been deleted successfully

An error description is returned as JSON object (see Error handling) in case of
key conflicts or other error(s) in the request definition.

- 15 -

3 OSI POST Request

An OSI POST request executes an OSI expression or an OSI access path for
evaluating the source property and returns a JSON response. An OSI request al-
lows retrieving data but also updating database content.

http://server:port/osi
body

The URL for an OSI POST request only contains the keyword osi (not case sensi-
tive). The request is passed in the body of the OSI POST request

body: The OSI POST request is passed in the body with following structure (see
Symbol reference / body - request data for OSI POST):

source => { fieldlist }

source - The source property defines the data source for the request, i.e. the ver-
tical dimension of data to be processed. A source property may refer to an elemen-
tary data item, to an instance or to a collection of instances. In case of including
functions in the source expression, the function result represents the source prop-
erty for creating the result. Following source definition formats are supported:

 access path - is a valid OSI access path for the database. Usually, an
access path consists of extent or property names and function calls. Ac-
cess path elements are separated by dot (.), e.g.

Persons().income('netto') or
Persons("ID123").income('netto')).

 function - is a valid OSI inline function enclosed in { ... }.

 expression - Expressions are valid OSI expressions (access paths com-
bined with operations)

Access paths, functions and expressions have to be defined within the context of
the database.

fieldlist - An OSI POST request returns data for an elementary data item
(value), an instance (object) or a collection (array). In case of complex data
(complex data type for source property), the field list defines the horizontal result
dimension (object elements). In case of referring to an elementary data type
source property, field lists are not supported and will cause an error. A field list al-
lows reducing the number of values returned from an instance but also adding de-
rived or related information. Moreover, field definitions allow defining hierarchical
response structures. A fieldlist contains one or more field definitions sepa-
rated by comma:

fielddef, ..., fielddef

- 16 -

fielddef - Field definitions may be provided in different ways:

 name - Name of a property defined for the data type of the preceding (up-
per) source. In this case, the value name in the response is the same as
the property name. In order to rename the value in the output, one may
define name: source, where name is the value name in the response
and source is the property name for the value to be assigned..

 name: source - In order to return fields in the response that are not de-
fined for source property (related or derived information), one may pass a
source definition as access path, function or OSI expression (see
source definition above).

 name: source => { fieldlist } - In order to define hierarchical re-
sponse, one may define a source (see definition above) appended by a
field list.

Sources in field lists have to be defined within the context of the preceding (upper)
source, i.e. when the source returns a Person property, field sources must re-
fer to access paths or inline expressions valid in the context of Person.

When the defined source is an elementary property, a field list must not be de-
fined and the item is returned as value. When source defines an instance or col-
lection without defining a fieldlist, the part of the response for this source cor-
responds to the response of a GET request.

In case of error(s) in the request definition or while executing the request, an error
description is returned as JSON object (see Error handling) in case of error(s).

More details about source and fielddef syntax are provided in Symbol refer-
ence / body - request data for OSI POST. How to define OSI access paths, func-
tions and expressions is described in ODABA Script Interface.

// OSI POST body
Persons('P123') => {
 name: { name + ', ' + first_name; }, // inline function
 employed_at: employees(0).company(0).name, // access path
 children: children => {
 name: name + ', ' + first_name, // expression
 loid: instanceLoid,
 age
 }
}

http://www.run-software.com/content/downloads/documentation/4.4_OSI.pdf

- 17 -

Response to an OSI POST request

The OSI POST request returns a JSON object (syntax of object and other syn-
tax elements referenced here is described in chapter Symbol reference). In case
of error, a string_value is returned containing an error message. The response
for a successful OSI POST request is an object with one named_value:

{ name: values }

An OSI POST request may define a request hierarchy. Here, the response struc-
ture for a request with one hierarchy level is discussed, which is repeated for all
deeper levels.

The top element name is the name of the source property. For a subordinated
source definitions, which are always part of a fielddef in a field list, the name
of fielddef is used.

The structure of values following name depends on the complexity of source.
values for collection properties and array attributes with complex data type are
returned as array of object(s):

name: [object, ..., object]
name: []

When the collection property is empty, [] is returned as empty array. For ele-
mentary array attributes an array of values is returned:

name: [value, ..., value]

For a single complex data type property an object is returned:

name: { named_value, ..., named_value }

For an elementary source property (elementary attribute, MEMO or BLOB), a value
is returned:

name: value

When returning an object, named_value(s) within the object are, usually,
names listed in the fieldlist for the source. When no field list has been de-
fined, all properties of the complex data type are included (same as for GET). For
collection properties within returned instance(s) , an array of URL objects is re-
turned (see GET response).

- 18 -

4 QUERY POST Request

Because the complexity of OSI POST requests, OHTTP provides a feature of pre-
defined queries, which may be executed as QUERY POST requests:

http://server:port/query/type/class/method?parameters

Mainly, query definitions provide a mapping between application and database ter-
minology. How the mapping will be resolved depends on the request type defined
in the query.

The URL for an QUERY POST request only contains the keyword query (not
case sensitive), followed by the request type, the class name and the query defini-
tion name. Request data is passed in the body of the QUERY POST request.
When omitting the class name, the method must be defined as global method.

type - Typically, QUERY requests (request type) are defined as OSI, PUT or
PATCH requests. In case of PUT/PATCH requests, values to be assigned are
taken from parameters passed to the request, where parameter names corre-
spond to application defined names. For OSI QUERY definitions, one may define
hierarchical requests.

class - defines the object type, the query definition refers to. In case of global
queries, * has to be passed as class name.

method - The method (query) defines a request body in a formalized way. A query
method is defined in global (*) or class context, i.e. class/methode do identify a
query.

QUERY definitions are stored in the resource database using a system-defined
type HTTP_Query, which also provides a check feature. QUERY definitions may
be provided as direct, reference or hierarchical field definitions (HTTP_Field). Di-
rect field definitions are defined for elementary data fields. Complex data type field
may either refer to another QUERY definition or to a subordinated field definition
list. Query definition resist on server side and are resolved there to corresponding
HTTP requests discussed in previous chapters.

Because OSI POST requests allow nearly everything manipulating the database
content (as GET, PUT, PATCH and DELETE do), QUERY POST request is also a
mean of security. By restricting access to QUERY, (allow=QUERY in the server ini-
file), only predefined queries may be executed.

- 19 -

4.1 Running queries

Queries are always submitted as HTTP GET requests containing server is, port,
query class and query name as well as HTTP method and optional parameters:

http://server:port/query/type/[class|*]/method?p1=v1&p2=v2...

server – server name ir ip addressed

port – port number that has been passed starting the server

type – HTTP method to be executed internally (GET, OSI, PUT, PATCH or
DELETE)

class – Class name or complex application data type that has defined the query.
When the data source referenced is a global (static) method, ‘*’ may be passed in-
stead of a class name.

method – Query name for a query defined for the class.

pn – any number of parameters. Parameter names will replace the values in the
resolved method and must correspond to field names or variables defined in data
sources. Variable names in data sources has to be preceded by ‘?’ (as ?id for id
parameter.

vn – parameter values contain either strings or numerical data. Typically, numeri-
cal parameters are passed as collection positions, while string data is used for
identifiers. String data should be quoted (“…”). When the parameter value is not a
numerical value, quotes may be omitted for string values.

- 20 -

4.2 GET Query

Get queries will return all data for an instance. Instance attributes are shown using
attribute names (using database terminology). The mapping for a GET query
would look like:

Class/type Query/fvariable Source Comment

Company/GET Show Company(?id) ?id is a parameter
passed with the HTTP
request

*/GET GetByLoid LOID(?id) Global LOID query (with-
out class name)

A GET query does not define field mappings. The following (test) request will be
generated:

Test: http://localhost:2000/query/GET/Company/Show?id=2
GET
user
pwd
/Company(?id)

The first four lines are generated for test purposes. The first line shows the URL
for calling the query with GET method. The /Company(?id) line below defines
the HTTP GET command executed internally.

Collection content is shown by listing links (LOID/number) for all instances. The
id passed, is a collection position in this example. The request returns:

{ Company: { name: "My company",
employees: [{ url: LOID/7659 },
{ url: LOID/1113 },
... 102 links follow
{ url: LOID/7638 }],
cars: [{ url: LOID/93 },
{ url: LOID/96 },
{ url: LOID/99 },
{ url: LOID/102 },
{ url: LOID/105 },
{ url: LOID/108 },
{ url: LOID/111 }] } }

In order to get data for referenced instanced, a global request could be submitted
for retrieving data by local object identifier(LOID).

Test: http://localhost:2000/query/GET/*/GetByLoid?id=1113
GET
user
pwd
/LOID(?id)

- 21 -

The query will return data for the first employee referenced in companies em-
ployees collection:

{ VOID: { pid: "P127", name: "Figpk", first_name: ["Fdvlqrjcmk","",""],
 birth_date: 1965-03-10, sex: male, married: false, income: 3064.00,
 age: 57, children_inc: 32513.00, notes: null,
 location: [],
 children: [{ url: LOID/5781 },
 { url: LOID/5772 },
 { url: LOID/5763 },
 { url: LOID/5754 },
 { url: LOID/5658 },
 { url: LOID/5649 }],
 parents: [{ url: LOID/1314 },
 { url: LOID/948 }],
 employee: [{ url: LOID/1113 }],
 company: [{ url: LOID/16 }],
 used_cars: [] } }

Attention: Providing a global LOID query allows WEB application to access any
kind of data in the database, which is an advantage, but might also be a risk.

- 22 -

4.3 OSI query

A complex mapping for retrieving data could look like (sample database):

Class/method Query/field name Source Comment

Person/OSI Children Persons(?id) ?id is a parameter
passed with the HTTP
request

name name

firstname first_name All first names

income Source name is the
same as target

children children() collection

name name Child name

firstname1 first_name(0) First first name

Income income Child’s income

Company/OSI EmployeesCount Company(?id) Calling a system func-
tion

count employees.count Number of employees

For the first query (Children) the mapping, the mapping tool generates the follow-
ing query:

Test: http://localhost:2000/query/OSI/Person/Income?id="P124"
POST
user
pwd
/osi
Persons(?id) ==> {
 name : name,
 firstname1 : first_name(0),
 income : income,
 children_income : children_inc,
 children : children() ==> {
 name : name,
 firstname : first_name,
 income : income } }

The first four lines are generated for test purposes. The first line shows the URL
for calling the query with GET method. Below, starting with the /osi line, the gen-
erated POST request follows as executed by the OHTTP server, because OSI has
been defined as request type (method) for the query (mapping). The result re-
turned from this request looks as:

- 23 -

{ Persons: { name: "Miller", firstname: ["Rznmgxpiwb", "", ""],
 income: 0.00, children_income: 12643.00,
 children: [
 {name: "Ycngp", firstname1: "Dcwktgfuxj", income: 8261.00},
 {name: "Czjso", firstname1: "Ygkordeqhx", income: 4382.00}]
} }

Instead of property paths, access paths may contain also function calls to system
or application functions. The second query (EmployeesCount) returns the num-
ber of employees in the company passed in ‘?id’.

Test: http://localhost:2000/query/OSI/Company/Employees?id=2
POST
user
pwd
/osi
Company(?id) ==> {
count : employees.count }

Instead of a company identifier, a collection position (2) has been passed in id.

- 24 -

4.4 PUT query

In order to create new instances, one may use PUT request (queries). The field
mapping is the same as for OSI request:

Class/method Query/field name Source Comment

Person/PUT Create Persons Person collection

name name Family name for
person to be cre-
ated

firstname1 first_name(0) First first name

firstname2 first_name(1) Second first name

birth birth_date Person's birth date

married married Marital status

id pid Person identifier

In order to assign values to the field names mapped, parameters with the same
name have to be passed with the query HTTP GET request: The POST request
generated from this mapping looks like:

Test: http://localhost:2000/query/PUT/Person/Create?
 id=P1115&name=Hover&firstname1=Paul&firstname2=John&
 birth="1.1.1999"&married=true
PUT
user
pwd
/Persons
{
 name : ?name,
 first_name(0) : ?firstname1,
 first_name(1) : ?firstname2,
 birth_date : ?birth,
 married : ?married,
 pid : ?id }

In case of success, the request returns an internal code 3 and a message:

{ code=3, message="Instance(s) created" }

The PUT query is an elementary way for creating new instances and usually not
able to execute related requirements. When, however, a method has been imple-
mented for creating a new person, which automatically creates a new person iden-
tifier, one could also call the implemented method:

http://localhost:2000/query/PUT/Person/Create

- 25 -

Class/method Query/field name Source Comment

Person/OSI NewPerson Persons

result CreateNew(?name,?
firstname,?birthdate,?
married)

Create new person
by method call

In order to assign values to the field names mapped, parameters with the same
name have to be passed with the query HTTP GET request: The POST request
generated from this mapping looks like:

Test: http://localhost:2000/query/OSI/Person/NewPerson?name="Miller"&
 firstname=Paul&birthdate="1.1.1999"&married=true
POST
user
pwd
/osi
Persons ==> {
 result : CreateNew(?name,?firstname,?birthdate,?married) }

The function result is returned as result value according to the mapping:

{ Persons: { result: true } }

http://localhost:2000/query/OSI/Person/NewPerson?name

- 26 -

4.5 PATCH query

In order to update data, a PATCH query may be defined, which allows updating
specific (defined) values in an instance.

Class/method Query/field name Source Comment

Person/PATCH Update Persons Person collection

name name Family name for
person to be cre-
ated

birth birth_date Person's birth date

married married Marital status

The PATCH request generated from this mapping looks like:

Test: http://localhost:2000/query/PUT/Person/Create?
 id=P124&&name=Hover&birth="1.1.1999"&married=false
PATCH
user
pwd
/Persons(?id)
{
 name : ?name,
 birth_date : ?birth,
 married : ?married,
 pid : ?id }

In case of success, the request returns an internal code 3 and a message:

{ code=3, message="Instance(s) updated" }

Similar to the PUT query, this is an elementary way for updating instances and
usually not able to execute related actions. When, however, a method has been
implemented for updating person data, one could also call the implemented
method.

http://localhost:2000/query/PUT/Person/Create

- 27 -

4.6 DELETE query

DELETE allow deleting single instances.

Class/method Query/field name Source Comment

Person/DELETE Delete Persons(?id) ?id is passed as
parameter

A DELETE query does not define field mappings.

Test: http://localhost:2000/query/DELETE/Person/Delete?id="P123"
DELETE
user
pwd
/Persons(?id)

In case of success, the request returns an internal code 4 and a message:

{ code=4, message="Instance(s) deleted" }

In order to perform more complex Delete requests, which will also perform related
actions, one could also call an implemented deletion method (see “PUT request”).

- 28 -

5 OHTTP Mapping Tool (HTTPMapper)

ODABA provides a HTTP mapping tool in order to simplify the specification of re-
quests. The mapping tool allows defining any number of queries. Query definitions
are stored in the resource database for the application.

Query definitions support simple (one instance) queries, but also complex hierar-
chical queries. A set of queries may contain data retrieval, update, create or delete
queries. In contrast to direct POST requests, queries allow single instance up-
dated and creations, only.

When defining queries, a request type has to be set. Usually, different request
types are used for following actions:

 retrieve data completely: GET
 retrieve selected fields: OSI
 Update instance data: PATCH
 Create new instance: PUT
 Delete an instance: DELETE

Usually, POST is not used as query type.

Each mapping (query) is assigned to a class, which defines a complex data type in
the application database. Class name and query (mapping) name must be unique,
i.e. names for mappings belonging to the same class must differ. Except GET and
DELETE queries, queries require a field list, which may be hierarchically struc-
tured. The field list defines a set of target names (field names) and data sources.
For simple cases, data sources are simple attribute names of the datatype (class)
defined for the mapping. Data sources may be defined, however, also as access
path (e.g. employee(0).company(0).name in order to get the company name
where the person is employed.

When the data source for a field is referring to a property with complex data type
(referenced instance, embedded instance) or a collection, a subordinated field list
may be defined, which refers to data source properties of the complex data type
for the referenced instance(s).

The HTTPMapper is called with an .ini or configuration file. Supposed, that OD-
ABA has been installed in an odaba directory, it might be called as follows:

 odaba/ode ini_file -PROJECT=HTTPMapper -DATDB=Sample.dev

The ini-file provides database locations for system databases. The applications re-
source database (DATDB) is passed in this example as parameter, but could also
be defined in the ini-file:

- 29 -

// ini-file ODE.INI for ODE tools
[SYSTEM]
DICTIONARY=odaba/ode.sys
[ode]
SYSDB=odaba/ode.sys
RESDB=odaba/ode.dev
;DATDB=Poject database passed as parameter
NET=YES
SYSAPPL=YES
ONLINE_VERSION=YES
PROJECT_DLL=Designer
CTXI_DLL=AdkCtxi
[HTTP]
Server=localhost
Port=2000

In order to run tests, the HTTP Server and port have to be defined, too. After start-
ing the HTTP mapper, the tool main window appears:

In order to test query definitions, one may change to the References tab.

- 30 -

5.1 Create query definition

With the create query definition button a new query will be defined after entering
data type/class name and query name. Fields below the list (Type, Source) are
mandatory and must be filled. User and PWD are optionally and required for test,
only.

Query definitions can be created, only, when the list is empty or a query definition
is selected in the list.

The lower part is used for documentation purpose, only.

5.1.1 Assign source path

In order to assign a data source path, additional support is provided when pressing
the assign source path button:

A selection three pops up show-
ing the class members of the
defined data type, or for fields
for the data type evaluated for
the parent field/query.

Pressing the select button writes
the data source path for the se-
lected property to the Source
field.

Selecting employees in the ex-
ample produces the following
path:

Company(?id).employees(-1)

The placeholder ?id is created by default as parameter for an identifying key or
position in the top collection. The top collection is assumed to have the same
name as the data type, which has to be changed, when this is nit the case. For ref-
erenced collections (as employees) either 0 (single instance reference) or -1 is
generated. In case of -1, the value should be replaced bay a valid locator (key or
position) or removed in order to indicate, the complete collection should be pro-
cessed (...employees()). The path could also include selection rules or any
other supported odaba::Property function as wall as functions implemented in
the application:

Company(?id).employees.where(married==true)

for showing married employees, only. In general, everything that defines a valid
ODABA access path or operation may be passed as data source.

- 31 -

5.1.2 Create field mapping

Query types except GET and DELETE require specific field mappings. Field map-
pings may be defined as subordinated field mappings for a query definition or for a
field mapping. Thus, one may define hierarchical structure reflected in the returned
or passed JSON string.

Create field mapping requires a field name and shows the mapping definition af-
terward in the mapping tree.

New field mappings may be inserted in front of the selected line (Insert field map-
ping) or appended at the end of the current hierarchy level (Append field map-
ping). In order to create a subordinated field mapping - typically for complex data
types referenced in the selected field mapping – the Create sub field mapping
button should be used. Field mappings may be moved up or down in the selected
hierarchy level using the Move field mapping up/down button. The Remove
field mapping button will remove the selected field mapping ans all subordinated
field mappings.

The Source path is the only optional field for the mapping. Similar to the query
definition, a selection list may be shown using the Assign field source button.

Fields below are used for documentation purpose, only.

- 32 -

5.2 Test query definition

After activating the References tab, test data will be shown:

The URL shown in the URL field may be generated using the Refresh URL button.
In order to avoid overwriting parameters added to the URL, the field has to be
cleared before refreshing. Before running the query, usually parameters have to be
added to the URL after ? for variable fields or ?-names in the source path. The re-
solved query shows the query as being defined in an offline test script, i.e. the first
four lines are not part of the request, but used for test purposes, only.

When changing URL parameters or source definitions, it may become necessary
to refresh the content of the Resolved query field using the Refresh resolved
query button. This is, however, not necessary for running the request, but for doc-
umentation, only.

With the Run test button, one may submit the request defined by means of the
query, supposed, that an HTTP server with the address defined in the URL is run-
ning. The query result will be displayed in the Result field afterward.

- 33 -

6 Error handling

There are two kind of errors that may appear. Server errors are errors that appear
when starting up the server. In this case, an error is written to the error log defined
in the TRACE option (environment) variable.

Another type of errors are response errors, i.e. errors caused by incorrect HTTP
requests or errors that appear when processing the request. In case of response
errors, a JSON string containing error code and message is returned:

{ code=number, message="string" }

number – is an internal termination code. Usually, error codes returned to a re-
quest are negative. Termination codes for requests executed successfully (in-
serted, deleted, etc.) are positive.

string - more detailed error message. The error message may also contain more
detailed information in case of database access errors or exceptions.

string and number follow the syntax rules described in Symbol reference / Val-
ues, formats and encoding.

6.1 Internal termination codes

Internal termination codes are set for different reasons.

In case of normal termination, the internal error code is set to one of the following
reasons:

 1 - Ok, but no content returned (DELETE, PUT, PATCH) ==> 200
 2 - Instance(s) updated ==> 201
 3 - Instance(s) created and/or updated ==> 201
 4 - Instance(s) deleted ==> 201

Server start errors:
 -31 - Invalid authentication type (basic/none) ==> 401
 -32 - Invalid data source defined in server ini-file. No database available

==> 401

Request errors
 -10 - Syntax error in URL ==> 404
 -11 - Missing locator in URL (// not allowed)
 -20 - Invalid URL (property or method not found) ==> 404
 -21 - Invalid URL (could not locate instance) ==> 409
 -30 - Authentication error (invalid user name or password) ==> 401
 -31 - Invalid data source defined in server ini-file. No database available

==> 404
 -32 - Request type not allowed (ALLOW option in server.ini) ==> 400

- 34 -

 -33 : Query mapping not defined ==> 409
 -40 - Invalid parameter passed in URL ==> 400
 -41 - Too many parameter passed in URL ==> 400
 -100 - Syntax error in OSI REQUEST body ==> 400
 -101 - Error parsing request source in ... ==> 400
 -102 - Body for OSI POST request does not contain code ==> 400
 -110 - Invalid OSI REQUEST body (property or member not found) ==>

400
 -111 - Error executing OSI request (field source) ==> 409
 -112 - Error selecting data in OSI REQUEST body (field source) ==> 409
 -113 - Could not locate instance for URL or OSI field source ==> 409
 -114 - Could not assign data to complex data type property ==> 409
 -115 - URL must refer to collection property ==> 409
 -116 - Updating existing instance is not allowed (invalid request or missing

parameter) ==> 409
 -117 - Cannot create new instance for LOID access ==> 409
 -118 - Creating new instance is not allowed (invalid request or missing pa-

rameter) ==> 409
 -119 - POST request must not refer to an instance (locator not allowed)

==> 409
 -120 - POST must refer to collection property (complex data type) ==> 409
 -121 - Data passed in body is not a valid JSON string ==> 409
 -122 - Property name or path not valid in current context ==> 409
 -123 - Missing data (body) for PUT, PATCH or POST request
 -900 - exception thrown ==> 500

In case of exceptions an error message is returned in response message text. Er-
ror codes are transformed later to HTTP error codes (e.g. ==> 200). In case of
success error codes, an additional message is (HTTP return codes 2xx) returned
in response.

6.2 HTTP error codes

Internal error codes are converted into HTTP error codes. Following error codes
are created:

 200 - Ok
 201 - Created (PUT or PATCH when a new instance has been created)
 204 - No content (request is ok but no content returned – PUT, PATCH,

DELETE)
 400 - Bad request in passed body
 401 - Unauthorized (user or password invalid)
 403 - Forbidden (user accepted but not authorized for requested opera-

tion)
 404 - not found (url is syntactically incorrect or not a valid database path)

- 35 -

 405 - Method not allowed (request type not supported by application)
 409 - operation refused (instance not located, duplicate key etc.)
 500 - internal server error

- 36 -

7 Symbol reference

Syntax for input (location, body) and response (values) is described in terms
of OSI BNF. The following topics contain the formal description of different lan-
guage elements:

location - defines the request source (source property). location is passed to
GET, PUT, PATCH, POST and DELETE.

body - contain complex data passed to PUT, PATCH, POST and OSI POST re-
quests.

values - returned as response to all request types. The complexity of values,
depends on request type. In case of request error(s), values is a string_value
containing detailed error information.

- 37 -

7.1 location - HTTP URL

The HTTP URL (location) is part of the OHTTP request and defines the location
for the required action. It follows the server and port specification in a HTTP re-
quest:

http://server:port/location[?parameter]

parameter - Several request types support parameters, which are well-defined
keywords for controlling the behavior of the request. Supported parameters de-
pend on request type. Following parameters are supported:

parameter := 'insert' | 'replace' | 'delete' |
 'noinsert' | 'noreplace'

location - The syntax for location is as follows:

location := property_reference(*)
property_reference := '/' name ['/' [locator]]
locator := '*' | key | skey | number
skey := '"' key '"'
key := string [key_component(*)]
key_component := '|' string

name - is a property name. The name in the first property name reference is, typi-
cally, an extent name (global collection) or LOID (collection of all instances in the
database). In order to address namespace extents, the property name may be
scoped (e.g. Person::Persons). The LOID property provides kind of short cut to
instances that are, otherwise, accessible via hierarchical path, only. names for fur-
ther property references must be defined in the context of the preceding property's
data type. The property in the last property reference is the source property for
the required operation.

locator - is either a key value or a number (position or LOID). The locator de-
fines a key or position for locating an instance. When locator is not a number, it
is interpreted as key value for the main key of the collection (defined in the data
model). When locator is a number, it is interpreted as position or LOID. In order
to pass a number as key, it must be put in quotation marks. For single references,
typically 0 (position) is passed as locator. For LOID an LOID value previously re-
trieved may be passed. A URL referring to a collection is called collection URL.
The behavior of the response in case of collection URLs depends on the request
type.

In order to indicate a collection iterator, '*' could be defined as locator. Usually, col-
lection iterators are used to iterate through a collection property. In order to skip
the locator, an empty locator may be passed (//). Skipping locators becomes nec-
essary, when calling property functions (e.g. Person::Persons/P1001/chil-
dren//count).

- 38 -

Elementary data type attributes and MEMO or BLOB references (elementary prop-
erty reference) do not require a locator. For array attributes, one may pass an ar-
ray index as locator in order to refer to a single element in the array. In order to re-
fer to an attribute within a complex attribute (e.g. city in address), a position 0
has to be passed (address/0/city)

skey - a string key is a key within quotation marks. Usually, quotation marks may
be omitted (as long as the key value is not recognized as number). When, how-
ever, the key value is a number, quotation marks are required in order to distin-
guish it from a position.

key - may be passed as locator, when the name refers to a collection property with
a unique key. Components for a component key are separated by '|'.

A number (position or index) may be passed to any kind of property. In case of el-
ementary properties (simple attributes, MEMO or BLOB), the number must be 0. For
collection properties or attribute arrays the number ranges from 0 to maximum di-
mension -1. For LOID, number is interpreted as value for the local object identifier
(LOID) similar to a key value.

Syntactical details for string, number and name are describes below in topic Val-
ues, formats and encodings below.

Several characters must not appear in an URL. In general, URLs must not contain
slash in names or key values. When it becomes necessary passing a key value
containing '/', OSI requests may be used instead. Other forbidden characters may
be pass as hexadecimal values preceded by '%'. Following characters must be
passed hexadecimal:

 # -> %23
 ? -> %3F
 \ -> %5C

URL data is expected to be UTF8 encoded.

- 39 -

7.2 body - request data for HTTP requests

The body passed to a PUT, PATCH, POST request contains a list of property
names and values to be updated. The body is always passed as values (see
also Values, formats and encoding below).

body := values

For elementary source properties, the body just contains a value. Usually, when
the source property refers to a complex data type instance, the body is passed as
object. In case of array attributes or collection properties, the body is passed as
array (see example below).

Empty values in the body will not cause any update. Thus, one may pass empty
values for an array in order to update selected elements (e.g. first_name:
[, , "Paul"], which updates the value for first_name[2], only).

null - For POST and PATCH request the null value can be used for resetting
the property to its initial state.

Person: pid, name, first_name[3], address[2]
Address: city, street, number
--> body for PATCH request:
{ pid: "ID123", name: "Miller", first_name: [null, "Paul"]
 address: [{ city: "Berlin", street: "Grüne Allee", nummer: 51 }, null,
null] }

- 40 -

7.3 body - request data for OSI POST

The body passed to an OSI request is a kind of expression that supports filtering,
update operations and field mapping. The body for an OSI PUT request has the
following syntax:

body := source [fieldlist]
source := operand | expr_code
fieldlist := fassign '{' fielddef [fielddef_ext(*)] '}'
fassign := '==>'
fielddef_ext := ',' fielddef
fielddef := name [assignment]
assignment := ':' body

name - is the name of a named_value in the JSON result string (see topic Val-
ues, formats and encoding below)

operand - is a syntax element defined in OSI BNF. Semantic details are de-
scribed in ODABA Script Interface - OSI. An operand is either an access path
consisting of property and function names separated by '.' or an expression (arith-
metical, Boolean etc).

expr_code - is an inline OSI function containing any number of statements, vari-
able declarations etc.

// operand examples
Persons // extent name
Persons() // collection property
birth_day // property name
Persons(0).children(0).name // property path
Persons.count() // access path (consists of properties and operations)
Date.now - birth_day // expression

// expr_code example (with Person as calling object)
{
VARIABLES
 int(10,2) income;
PROCESS
 children.top();
 while (children.next())
 income += children.income;
FINAL
 return(income);
}

http://www.odaba.com/content/downloads/documentation/4.4_OSI.pdf
http://www.odaba.com/content/documentation/odaba/documents/opa/HierarchyTopics/operand.html

- 41 -

7.4 Request result (response)

Each request returns a JSON string with the syntax of values as response (syn-
tax of values is described below in Values, formats and encoding). Most re-
quests (except GET and OSI) simply return a string_value. In case of error, al-
ways a string_value is returned.

When terminating successfully, GET and OSI respond with an JSON object (see
Values, formats and encoding) like:

{ name: values }

name - is the name of the source property (source) for the request defined in
body (OSI) or location (other HTTP requests) .

values - Depending on the referenced property and type of request, the structure
of values differs. Restrictions for values are described for each request type sepa-
rately.

// get number of employees for first company
http://127.0.0.1:8888/Company/0/employees/count ==> JSON result:
{ count: "485" }

// Get person's children
http://127.0.0.1:1234/Persons/ID123/children ==> JSON result:
{ children: [
 { pid: "ID123" name: "Miller", first_name_0: "Paul",
 first_name: ["Henry", ""], birth_date: "1966-11-11", sex: "male",
 married: false, income: 2500.00, age: 52, children_income: 3807.22,
 notes: "this might be a very long text in C-string format\n",
 address: [{ url: LOID/12346127 }],
 children: [
 { url: LOID/12346000 },
 { url: LOID/12346002 }],
 parents: [{ url: LOID/12346001 }],
 employee: []
 },
 { ... next child instance }, ...
] }

- 42 -

7.5 Body for QUERY requested

The body for a QUERY request is not passed with the URL but defined in an ap-
propriate query definition on server side (resource database). The URL for query
requests has to be send as:

http://server:port/query/type/class/method[?parameters]

server and port specification is followed by the fixed value query.

type: defines the sub type for the query (GET, PUT, PATCH, OSI, DELETE)

class: The class name is the data type, the query has been defined for.

method: is the method name defining the query within the class.

The query definition may contain any numbers of parameters preceded by ‘?’.

parameters := parm [parm_ext(*)]
parm := name ‘=’ value
parm_ext := ‘&’ parm

name: is a variable name referenced in the query with preceding ‘?’.

value: is a string replacing the appropriate variable when executing the query.
When value contains special characters, it should be quotes.

- 43 -

7.6 Values, formats and encoding

values - Values may be returned as result of a GET request or passed as data
via a POST, PUT or PATCH request. Values represents either a single value, an
object or a value array:.

values := value | object | array
object := '{' named_value [named_value_ext(*)] '}'
named_value_ext := ',' named_value
named_value := name ':' value
array := '[' value [value_ext(*)] ']'
value_ext := ',' value
value := string_value | number |
 'true' | 'false' | 'null'
string_value := '"' string '"'

name - A name consists of ASCII characters (lower and upper case letters, digits,
underscore). Typically, names appear as property names or field names in result
definitions or body data.

number - A number is an integer, decimal or a float point number. It depends on
context (property definition), which number types are allowed.

null - may be passed or returned for MEMO and BLOB properties and indicates
no-data, which is slightly different from an empty string (""). null is also passed in
order to indicate, that a property should be reset.

true, false - are the only values allowed for Boolean properties.

string - String values must not contain special characters as newline or tab.
Special characters have to be escaped as follows (see also JSON syntax):

 \ ==> \\
 line feed (10) ==> \n
 carriage return (13) ==> \r
 backspace (8) ==> \b
 form feed (12) ==> \f
 tab (9) == \t
 " ==> \"

All string values exchanged via OHTTP are UTF8 encoded. Binary data (BLOB
properties) is always passed as BASE64 string (which is UTF8 compatible),

// POST, PUT, PATCH data block
{ name: "Müller", age: 45, comment: "Höhen und \nTiefen"
 image: "......" }

// JSON result instance
{ name: "Müller", age: 45, comment: "\Höhen und \nTiefen",
 image: "......" }

https://www.json.org/

- 44 -

8 Testing HTTP requests

ODABA provides a little test framework for testing OHTTP requests. Tests may be
prepared in a test script containing any number of tests. The test script consists of
any number of test blocks, where each test block has the following structure:

 line 1: test header (fix text 'TEST:' followed by test title)
 line 2: request type (PUT, PATCH, POST, DELETE, QUERY)
 line 3: user name
 line 4: password
 line 5: URL without server:port (e.g. /Persons::Person/0/children)
 line 6 and following (until end of file or next empty line or next test header):

body

Empty lines or comment lines (beginning with //) between test blocks and block
lines will be ignored.

In order to run the test script, a command line server or server daemon has to be
started and an OSI scrip as shown below has to be called:

OShell.exe OShell.ini TestHTTP.osh

Since the function OHTTPExecute(testscript,server,port) for running the
test script is implemented in ode.dev, the database has to be defined as RE-
SOURCES database in the data source (here Sample).

While running the script, Test case head line, HTTP return code and result string
are written to console.

- 45 -

// test block
TEST: Create instance with pid P1001
PUT
user
upwd
/Person::Persons/P1001
{ name:"Hops0", first_name: ["Sala0", "Tralala0"], married: true,
location: {zip: 1000, city: City1000, street: "Short Lane", number:
1000}, notes: "temporary notes", birth_date: "2000-10-31" }

// TestHTTP.osh (run with OShell)
cd Sample // open data source (see OShell.ini)
osi 'dictionary.loadOSILibraries' // load login function when not defined
in .dev

osi begin
 Option("HTTP.timeout").assign("300"); // increase timeout
 OHTTPExecute("Test.txt","localhost","8888"); // run test script
end

// OShell.ini for running OShell
[SYSTEM]
DICTIONARY=ode.sys

[OShell]
DSC_Language=English

[OSI]
Library=./*.osi

[Sample]
DICTIONARY=Sample.dev
RESOURCES=ode.dev
DATABASE=Sample.dat
PLATFORM_INDEPENDENT=YES
SHARE=YES
ACCESS_MODE=Write
ONLINE_VERSION=YES

- 46 -

8.1 Test with internally called server

In order to support automated tests, one may also start an internal server. The pro-
cedure is the same as described above, except, that the server need not to be
started and the TestHTTP.osh script looks a bit different (see example below).

Moreover, the OShell.ini file needs slight modifications. The Allow and Authentica-
tion option from the server.ini file have to be moved to OShell.ini (see below).

A Server.ini file with an OHTTPServer section has to be provided at location de-
fined in OHTTP.ServerIni. The Port number defined in OHTTP.Port has to be
passed also to OHTTPExecute() function.

// TestHTTP.osh for internal server start (run with OShell)
set OHTTP.Port=8888
set OHTTP.ServerIni=Server.ini

cd Sample
osi 'dictionary.loadOSILibraries'

osi begin
 HTTPGlobal::Start();
 Option("HTTP.timeout").assign("300");
 OHTTPExecute("Test.txt",%OHTTP.Port%);
 HTTPGlobal::Stop();
end
q

// Modified section in OShell.ini
...
[OShell]
DSC_Language=English
ALLOW=all
Authentication=basic;Person::Login
...

- 47 -

9 Database model for ODABA sample database

The model below defines the sample database model in ODL language. ODABA
ODL is an extension of the ODMG ODL standard. With the server, also a test li-
brary is delivered, which contains a number of test requirements (and examples).

UPDATE SCHEMA Sample {

// Car class definition
 CLASS Car PERSISTENT (KEY IDENT_KEY pk(cid);) {
 ATTRIBUTE {
 CHAR(10) cid;
 STRING(40) type;
 INT(2) number_of_seats = 4;
 };

 RELATIONSHIP {
 Company SECONDARY company INVERSE cars;
 SET<Employee> SECONDARY users ORDERED_BY (pk UNIQUE)
INVERSE used_cars;
 };
 };

// Person class definition
 CLASS Person PERSISTENT
 (KEY { IDENT_KEY pk (pid); sk (name); };
 EXTENT MULTIPLE_KEY owner Persons ORDERED_BY (pk UNIQUE NOT_EMPTY,
sk);)
 {
 ENUM Sex {
 male = 1,
 female = 2,
 undefined = 0
 };

 STRUCT Address PERSISTENT {
 STRING(6) zip;
 STRING(40) city;
 STRING(80) street;
 STRING(6) number;
 };
 ATTRIBUTE {
 NOT_EMPTY CHAR(16) pid;
 STRING(40) name;
 STRING(40) first_name[3];
 DATE birth_date;
 Sex sex = male;
 bool married = false;
 INT(10,2) income;
 TRANSIENT INT(3) age SOURCE((Date().now() - birth_date)/365.25
);
 TRANSIENT INT(10,2) children_inc SOURCE (children.sum(income));
 };

- 48 -

REFERENCE Address location;
 REFERENCE STRING notes[4000];

 RELATIONSHIP {
 SET<Person> children BASED_ON Persons
 INVERSE parents;
 Person SECONDARY parents[2] BASED_ON Persons
 INVERSE children;
 Employee SECONDARY employee INVERSE person;
 };
 };

// Employee class definition
 CLASS Employee PERSISTENT : Person person BASED_ON Person::Persons
INVERSE employee
 (KEY IDENT_KEY pk(pid);)
 {
 RELATIONSHIP {
 Company SECONDARY company BASED_ON Company
 ORDERED_BY (pk UNIQUE)
 INVERSE employees;
 Car NO_CREATE used_cars[2] BASED_ON .company.cars
 ORDERED_BY (pk UNIQUE)
 INVERSE users;
 };
 };

// Company class definition
 CLASS Company PERSISTENT (KEY IDENT_KEY pk(name);) {
 ATTRIBUTE NOT_EMPTY STRING(200) name;

 RELATIONSHIP {
 SET<Employee> employees BASED_ON Employee
 ORDERED_BY (pk UNIQUE)
 INVERSE company;
 SET<Car> OWNER cars ORDERED_BY (pk UNIQUE)
 INVERSE company;
 };
 };

- 49 -

// View definition
 VIEW ChildrenIncome
 FROM(SET<Person> persons = Person::Persons)
 WHERE(children.count > 0)
 GROUP BY(STRING incGroup = (income <= 1000 ? 'low' :
 income <= 3000 ? 'medium' :
 income <= 7000 ? 'high' :
'very_high'),
 Sex sex = sex)
 (KEY IDENT_KEY pk(incGroup, sex);)
 {
 ATTRIBUTE {
 STRING(10) incGroup ;
 Sex sex ;
 INT(10,2) ci_sum = sum(children_inc);
 INT(10,2) ci_avr = average(children_inc);
 INT(10,2) ci_dev = deviation(children_inc);
 INT(10,2) ci_min = minimum(children_inc);
 INT(10,2) ci_max = maximum(children_inc);
 TRANSIENT INT(10,2) diff = ci_max-ci_min;
 };
 };

 // Global extent definition
 EXTENT Company UPDATE MULTIPLE_KEY OWNER Company
 ORDERED_BY (pk UNIQUE NOT_EMPTY);
 EXTENT Employee UPDATE MULTIPLE_KEY OWNER Employee
 ORDERED_BY (pk UNIQUE NOT_EMPTY);
 EXTENT ChildrenIncome TRANSIENT OWNER ChildrenIncome
 ORDERED_BY (pk UNIQUE NOT_EMPTY);

};

	1 ODABA HTTP server
	2 HTTP requests
	2.1 GET request
	2.2 PUT request
	2.3 PATCH request
	2.4 POST request
	2.5 DELETE request

	3 OSI POST Request
	4 QUERY POST Request
	4.1 Running queries
	4.2 GET Query
	4.3 OSI query
	4.4 PUT query
	4.5 PATCH query
	4.6 DELETE query

	5 OHTTP Mapping Tool (HTTPMapper)
	5.1 Create query definition
	5.1.1 Assign source path
	5.1.2 Create field mapping

	5.2 Test query definition

	6 Error handling
	6.1 Internal termination codes
	6.2 HTTP error codes

	7 Symbol reference
	7.1 location - HTTP URL
	7.2 body - request data for HTTP requests
	7.3 body - request data for OSI POST
	7.4 Request result (response)
	7.5 Body for QUERY requested
	7.6 Values, formats and encoding

	8 Testing HTTP requests
	8.1 Test with internally called server

	9 Database model for ODABA sample database

