
0110100100111001010110101101
0100101110111000101110101010
1011101100101001010110101010
1001101011010010011100101011
0101101010010111011100010111
0101010101110110010100101011
0101010100110011010010011100
1010110101101010010111011100
0101110101010101110110010100
1010110101010100110011010010
0111001010110101101010010111
0111000101110101010101110110
0101001010110101010100110011
0100100111001010110101101010
0101110111000101110101010101
1101100101001010110101010100
1100110100100111001010110101
1010100101110111000101110101
0101011101100101001010110101
0101001100110100100111001010
1101011010100101110111000101
1101010101011101100101001010
1101010101001100110100100111
0010101101011010100101110111
0001011101010101011101100101
0010101101010101001100110100
1001110010101101011010100101
1101110001011101010101011101
1001010010101101010101001100
1101001001110010101101011010
1001011101110001011101010101
0111011001010010101101010101
0011001101001001110010101101
0110101001011101110001011101
0101010111011001010010101101
0101010011001101001001110010
1011010110101001011101110001
0111010101010111011001010010
1011010101010011001101001001
1100101011010110101001011101
1100010111010101010111011001
0100101011010101010011001101
0010011100101011010110101001
0111011100010111010101010111
0110010100101011010101010011
0011010010011100101011010110
1010010111011100010111010101
0101110110010100101011010101
0100110011010010011100101011
0101101010010111011100010111
0101010101110110010100101011
0101010100110011010010011100
1010110101101010010111011100
0101110101010101110110010100
1010110101010100110011010010
0111001010110101101010010111
0111000101110101010101110110
0101001010110101010100110011
0100100111001010110101101010
0101110111000101110101010101
1101100101001010110101010100
1100110100100111001010110101
1010100101110111000101110101
0101011101100101001010110101
0101001100110100100111001010
1101011010100101110111000101
1101010101011101100101001010

1101010101001100101001
run

ODABA Script Interface - OSI

ODABA NG

run Softare-Werkstat GmbH
Winckelmannstrasse 61
12487 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-softare.com

Berlin, March 2018

Contents

1 Introduction...5
2 Overview..6

2.1 Running OSI..8
2.2 Defining Data Sources...10
2.3 INI-file for OSI..11

3 How to Write an OSI Script File..12
3.1 Database References..13

4 File References..14
5 Data Types...15

5.1 Basic Data Types..16
5.2 Enumerated Data Types..20
5.3 Structure Definitions..21
5.4 Interface Definition..23

5.4.1 Interface Exports...24
5.5 Class Definitions..26

5.5.1 Class header...27
5.5.2 Type Property List for Persistent Classes...................................28
5.5.3 Class Exports..32
5.5.4 Class Extensions...35

5.6 View definition...36
5.6.1 View Header..37
5.6.2 Type Property List for Views..43
5.6.3 View Members...45

5.7 Aggregation schema...47
5.7.1 Aggregation example..48
5.7.2 Aggregation levels...49
5.7.3 Accessing aggregation collections..51

5.8 Template Data Types..53
5.9 Member Definitions...55

5.9.1 Inheritance...57
5.9.2 Members...58
5.9.3 Attributes...62
5.9.4 References..65
5.9.5 Relationships...70
5.9.6 Keys and Key References...76

6 Variables..80
6.1 Database Variables...85
6.2 Global Variables..87
6.3 Self variable and execute operator..88
6.4 Lookup priorities..89

7 Functions...91

7.1 Function Header..93
7.1.1 Function Options...94
7.1.2 Type of Returned Value..98
7.1.3 Function Parameters...99

7.2 Function Body...101
7.2.1 Variable Definitions...102
7.2.2 Processing...104
7.2.3 Error handling..105
7.2.4 Final Section..109

7.3 Constructor..110
7.4 Statements..111
7.5 Global Functions...112
7.6 Class Functions...113
7.7 Local Functions...114

8 Operation Reference...115
8.1 Syntax Functions...116

8.1.1 Process Flow Operations..117
8.1.2 Built-in Operations...121
8.1.3 Conditional operands..129
8.1.4 Query Operations..130

8.2 Using transient variables...140
8.3 Operation paths...141
8.4 Dynamic function calls...147
8.5 Built-in Class Functions...148

9 OSI Templates...150
9.1 ASCII templates..152
9.2 HTML Templates...155
9.3 Template specifications...157
9.4 Template Result..160
9.5 Debug templates...162

10 Trace function calls...163
11 OSI-Debugger..165

11.1 Breakpoints...167
11.2 Reload OSI functions...170
11.3 Debug Commands..171
11.4 Debug functions..175

12 Running OSI under OShell...176
13 References...177

1 Introduction

ODABA is an object-oriented database system that allows storing objects and
methods as well as causalities. As an object-oriented database, ODABA supports
complex objects (user-defined data types), which are built on application relevant
concepts.

ODABA-applications are characterised by a high flexibility that is achieved by
supporting in addition to object (concept) hierarchy, multifarious relations between
objects (master and detail relations, relations between independent objects and
others). This way conditions and behaviour of objects in the real world can be
represented considerably better than in relational systems.

ODABA-applications cannot only be drawn up as event-driven applications within
the field of the graphical surface but also at the database level. This is one more
way in which the application design is very close to the problem.

This makes ODABA-applications a favourite possibility to solve highly complex jobs
as come up in administrative and knowledge areas.

Platforms ODABA supports windows platforms (Windows95/98/Me,
Windows NT and Windows 2000) as well as UNIX
platforms (Linux, Solaris).

One can build local applications or client server
applications with a network of servers and clients.

Interfaces ODABA supports several technical interfaces:
 C++, COM as application program interface (this

allows e.g. using ODABA in VB scripts and
applications)

 ODBC (for data exchange with relational
databases)

 XML (as document interface as well as for data
exchange)

User Interfaces ODABA provides special COM-Controls that easily allow
building applications in Visual Basic. On the other hand
ODABA provides a special ODABA GUI builder.

2 Overview

The ODABA Script Interface (OSI) is a script language for accessing and updating
ODABA databases. The OSI script language included the object definition
language (ODL) and a method language for implementing OSI functions (ODABA
Script Language - OSL). OSL and ODL together form the OSI language. The OSL
syntax is similar to JAVA and easy to understand for C++ or JAVA programmers.
On the other hand, the OSL syntax follows the suggestions of the ODMG database
management group as defined in the “Object Data Standard: ODMG 2003”.

To be JAVA and ODMG compliant and to support several ODABA specific
features, the OSI language provides different syntax variants in several places.
While programmers prefer JAVA like syntax, we use JAVA syntax as far as
possible for OSI function examples. For model definitions (ODL examples), we try
to be as close as possible to the ODMG syntax, but often we have to introduce
ODABA specific extensions (options and qualifiers), which are not part of the
ODMG language.

Features OSI provides most features an object-oriented
programming language is supposed to support. Besides, it
supports embedded OQL language elements (queries)
and C++ program interfaces.

Run-time
classes

OSI allows defining classical queries (SELECT
statements) but also defining procedures or complete
applications. Besides resources (classes, structures,
functions etc.) defined in the project resource database,
OSI allows defining run-time classes within the OSI script.
Run-time classes are classes relevant for the application
only, which will extent the definitions in the resource
database.

Interfaces From within OSI one may call functions defined in the
resource database. Functions can be called as class
functions via the OSI C++ interface but also as context
functions. Support for calling COM functions is planned for
OSI 2.0.

Functionality OSI supports most of the ODABA access class functions
for odaba::Dictionary, odaba::Fatabase,
odaba::ObjectSpace and odaba::Property. This
includes browsing functions as well as update functions.

Built-In
functions

Several built-in classes and functions are provided to
support file output and several system features. One may
extent the built-in functionality by providing a libraries for
your support classes.

C++ Even though the OSI syntax is rather similar to C++, there
are some important differences, which result from the fact,
that OSI operates on a database and not only on memory.
Syntactically, OSI does not make differences between
transient (application) and persistent (database)
instances.

 person.age = 25;

The statement above could apply to a database Person
instance, but also to a Person variable defined in the
application.

Restrictions OSI is syntactically similar to C++, but does not support a
number of C++ features (e.g. operator overloading, or
local classes and types).

For using and accessing standard libraries from within OSI
functions, you need to define an OSI interface to those
classes. OSI provides a simple interface mechanism,
which allows defining an interface to any C++ class.

OSI 1.0 ignores access privileges for complex data type
members (private, protected, public). They can be
specified but will be ignored. Support for access privileges
is planned for OSI 2.0

Differences OSI does not support pointer variables, but only “by
reference” and “by value” variables. The variable
semantics differs slightly from the C++ variable semantics,
since OSI variables got a curser functionality (see
“Variables”).

Different is also the handling of virtual methods, since OSI
considers a method as virtual only for the class, where the
method is defined as virtual, i.e. the VIRTUAL property for
methods is not inherited in OSI. Functions declared as
virtual are overloaded, when a specialized class defines
an appropriate overload.

OSI allows defining functions with the same name for one
class. In contrast to C++, however, OSI provides implicit
data conversion features also for parameters. Hence, OSI
cannot select the proper function by parameter types.
Instead, OSI 1.0 looks for the number of parameters. For
OSI 2.0 a “best fit” strategy is planned for selecting
functions with identical names in a class.

2.1 Running OSI

One may run an OSI application from a command line console or from within
OShell, when you have installed at least ODABA 9.0. OSI is platform independent
and can be used on Windows, LINUX and UNIX platforms.

OSI requires a project resource database (dictionary), which defines the data and
functional model for the application. You may also run an OSI application without
dictionary as long as you are not going to store persistent data in a database.

Usage You may run OSI from a command line in DOS or UNIX.

OSI script_file
[-I:ini_file | -D:dict_path]
[-P:parameters]
[-E:entry_point]
[-DB]

Besides the script file, OSI requires at least a dictionary,
which can be defined in the script file, in the ini-file or as
parameter.

script_file The script file parameter refers to a location where the
ODABA Script file is stored. When not passing an ini-file
or dictionary path, the dictionary location must be defined
in the script file.

dict_path The dictionary path provides the location for the dictionary.
It becomes necessary, when no dictionary is defined in the
script file. When passing the dictionary location, the
dictionary location in the script file will be ignored.

ini_file Instead of a dictionary path, an ini-file can be passed.
When the ini-file refers to a dictionary, this will replace the
dictionary location defined in the script file. When
containing a database reference, the data base location in
the ini-file is replaced as well.

Besides database and dictionary, the ini-file may contain
definitions of system variables, which can be referenced in
the script.

parameters Any number of parameters separated by comma can be
passed to the script file. When the list contains spaces,
the option must be enclosed in “”:

“-P:parm1, message text, parm3”

Parameters are passed in the same sequence to the
function referenced as entry point.

entry_point The entry point is the name of the function that is called as
starting function. When no entry point is defined, “main” is
assumed.

Entry point names are case sensitive, i.e. when not
defining an entry point, the script file must contain a
function with the name ‘main’.

Debug mode One may run OSI in debug mode by setting the debug
option –DB when calling OSI. One may also set the debug
option in the ini-file (OSI.DEBUG=YES) or in a system
environment variable.

More details about the debug mode One may find in
chapter “OSI-Debugger”.

Samples You will find sample scripts and ini-files in the …
ODABA/Sample installation folder.

2.2 Defining Data Sources

OSI requires a database defined in a data source. The data source definition
includes at least a dictionary, but usually it consists of dictionary definition and
database path.

There are different ways of providing data source definitions. Typically, the data
source is defined in the script file or in an ini-file passed to OSI. In both cases,
there are two ways to refer to a data source. One way is to define the data source
implicitly by defining dictionary and database in the script or in the OSI section of
the ini file.

The other way is defining the data source explicitly in a separate section of the ini
file. In this case, the data source is defined in a section that is preceded by the data
source name:

[DataSource1] Data source name

Now, the data source can be referred to by its data source name as:

DATA_SOURCE=DataSource1

This way, it is also possible to refer to data sources defined in the database
catalogue. When referring to a database catalogue, the ini-file must contain a
catalogue section that defines the location of the data catalogue:

[DATA-CATALOGUE]

Data catalogues can be provided locally and on the server side. In one application,
however, one may refer to only one data catalogue. How to define data sources
and file locations in the data and file catalogue one may find in the “ODABA –
Server” documentation.

Multiple data
sources

Functions within an OSI script may refer to multiple data
sources. When referring to more than one data source,
the ini-file should contain definitions for all required data
sources.

The OSI script may refer directly to dictionary and
database paths. In this case, the script becomes
dependent on the data location, which can be avoided by
referring to data sources in an ini-file.

2.3 INI-file for OSI

An ini-file defines the data source, input and output files and other process specific
parameters. The following example refers to the specification of the sample
database source based on an ODABA database.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[OSI] OSI section
DICTIONARY=C:\ODABA\ Sample\Sample.rot
DATABASE= C:\ODABA\Sample\Sample.dat
NET=YES
COLLECTION=Company.employee
DEBUG=YES

SYSTEM The system section allows providing a system dictionary,
which mainly contains error messages and descriptions.

DICTIONARY The dictionary refers to the system database (usually
ode.sys), which contains error messages and message
descriptions for system (database) errors.

OSI The OSI section defines data source and runtime options
for running OSI script files.

DICTIONARY The dictionary refers to the application database (resource
database), which contains data model definitions, OSI
scripts and other run-time resources.

DATABASE The database option contains the path to the database
file.

NET Indicates, whether the database allowed shared access
(YES) or not (NO).

COLLECTION Allows defining an access path to a collection to be
processed by the OSI function (optional).

DEBUG In order to debug OSI functions, this option may be set to
true. The option may be set also by the -DB option when
calling OSI or OShell.

When running GUI applications in debug mode
(debug=true), those must be called via code (code.exe)
and following option has to be set in addition:

CONSOLE_APPLICATION=YES

in order to redirect application output to console.

3 How to Write an OSI Script File

An OSI script file includes database locations, class and view definitions,
definitions of global variables and functions. A script file must have at least one
function, which is declared as entry point. By default, this is a function with the
name “main”.

Script files for complex applications may include other script files, e.g. one script
file per class.

Class extensions Within a script file, one may extend the functionality of a
class defined in the resource database, but you cannot
extent the structure.

Syntax The syntax of an OSI script file is compliant with the
ODABA ODL (object model definition language). Details
are described in the “ODABA Language Reference”.

Keywords The OSI language accepts most keywords in lower case
letters and capital letters (but not mixed). For better
readability, we use capital letters for keywords in the
examples. All capital letter keywords are reserved name
and cannot be used as identifiers (e.g. variable names).
Most lower case keywords can be used as keywords but
also as variable names. This might cause syntax
ambiguities in some cases and therefore, we suggest
using capital letter keywords, always.

Comments Comments can be written at the line end starting with //.
After a comment no code can be defined on a line.
Comments may also start on first line position.

// location for resource database
DICTIONARY=c:/ODABA/Sample/Sample.res; // sample resources

Comment blocks are comments enclosed in /* … */.
Comment blocks can be defined at specific places, only.
One may define comment blocks before class and view
definitions, function definitions, file references or variable
definitions. We suggest, however, using comments rather
than comment blocks.

/* This file includes the class declarations
 Person and its extent definitions */
INCLUDE c:/ODABA/Sample/Person.osi;

3.1 Database References

Database references include the definition of locations for the resource database
(dictionary) and for the database containing the application data.

Database references must be defined at the beginning of the script file and cannot
be defined in included script files.

DICTIONARY = c:\ODABA\sample\sample.res;
DATABASE = c:\ODABA\sample\sample.res;

Another way of defining a database is referring to a predefined data source:

DATASOURCE = Sample;

Data sources must be defined in the data catalogue, which is defined in the OSI
ini-file in the [DATA_CATALOGUE] section or in a separate section of the OSI ini-
file with the data source name.

Reference
priorities

Database references can be defined in different places,
but at least in one place, the databases must be defined.
The database definition in the script file can be overwritten
by the database definition in [OSI] section of the ini-file
passed to the OSI program call, i.e. the database
references in the script file have lowest priority.

Highest priority have database references in the program
call (dictionary parameter), which will overwrite database
references in the ini-file as well.

4 File References

File references are used to include specifications defined
in other script files. This allows reusing definitions for
different applications.

File references can be defined at any place outside a
class or view definition, outside a function definition and
outside comment blocks.

INCLUDE c:/ODABA/Sample/Person.osi;

One cannot use file references to include variable
definitions in a function or in a class definition. Thus, each
included file must provide complete definitions in the
sense of the OSI syntax. This means, each included file
must contain any number of valid class, view, variable or
function definitions.

Included script files may contain file references, again (as
in the Person.osi example:

INCLUDE c:/ODABA/Sample/PersonStruct.osi;
INCLUDE c:/ODABA/Sample/PersonExpr.osi;

Splitting
definitions

Class and view definitions can be defined in several
blocks. Thus, one section may contain the structure
definitions while the other contains the function definitions.
Each class or view definition section must begin the
CLASS or VIEW keyword and referring to the same class
name.

Specifications of different definition sections for a class or
view are collected for the corresponding class or view, i.e.
each definition section will extent the class or view
definition.

Included files may contain a debug information path
(seeOSI-Debugger), which refers to debug commands for
the included file. Included files may also contain dictionary
and database information, but this will be ignored.

5 Data Types

Within an OSI script one may refer to basic data types,
user-defined data types and template types.

User-defined types are supported as complex data types
(structure, class) and enumerated data types.

Type hierarchy Most programming environments more or less support the
following type hierarchy

Data type
basic data type

text type
numerical type
date/time type
Boolean type

user-defined data type
enumerated data type

typed enumeration
complex data type

structure
class
interface

view
type definition
union type

template type
collection

constant

OSI does not make a difference between an interface
definition and a class, i.e. an interface definition is
considered as class definition, which does not support
persistence. OSI supports interface definitions, but those
are handled like class definitions.

OSI supports two extensions in the type hierarchy. One
are typed enumerations, which define a link between
category and class. The other are views, which are
considered as method and interface in OSI.

OSI 1.0 does not support union types. OSI 1.0 does also
not support the declaration of constant values.

5.1 Basic Data Types

Basic data types provide a number of built-in data types.
For convenience, basic data types have ODABA names,
but also synonyms, which correspond to Java/C++ and
ODMG data types.

Most basic data types in OSI do have optional size
parameters.

CHAR(40) name; // different from: char name[40];
INT(10) count; // same as: long count;

The size parameter corresponds to the number of relevant
characters or digits of the data type. The size parameter
differs from the dimension value, which can be accessed
by index.

Text types Text types are provided for storing text with different
properties.

CHAR defines a text buffer, which is padded with blanks. The
CHAR type differs from the JAVA/C++ specifications, which
have always size 1.

The type is obsolete and STRING should be used,
instead. Operating with CHAR values will truncate trailing
spaces automatically.

Synonyms: char

Default size: 40

CCHAR Coded character fields are used for storing text data in a
coded form in the database to avoid that sensitive
information can be read directly in the database. There is
no correspondence in C++/Java or ODMG standard.

Synonyms: cchar

Default size: 40

STRING Strings are 0-terminated text strings terminated with 0
after the last valid character. The size parameter for a
string value defines the maximum number of relevant
characters not including the terminating 0. STRING types
correspond to the string template type in ODMG
(string<size>)

Synonyms: string, MEMO, string<size>

Default size: automatic

UTF8 defines a 0-terminated Unicode text string, which is
terminated with double 0 after the last valid character. The
size parameter for a Unicode string defines the maximum
number of relevant characters not including the
terminating 0. There is no correspondence in C++/Java or
ODMG standard.

Synonyms: utf8

Default size: automatic

Numeric types Numeric types are used for presenting and storing
numeric values. Numeric types are supported as integer
types and float number types.

INT describes an integer value. Two size parameters can be
passed to integer types, defining the maximum number of
digits, which can be stored in the field, and the precision.

The precision value defines the number of positions
behind the decimal point.

// number with 7 digits before and 2 after the decimal point:
INT(9,2) income;
// 10 digits national income measured in 1000 €:
INT(10,-3) national_inc;

The precision value allows defining a decimal point
position as well as a factor. When data conversion
becomes necessary, it takes into account the precision of
source and target value.

Synonyms: int, DEC
short - (INT(4))
long – INT(10)
long long – INT(19)

Default size: 10

Default precision: 0

BIT is an integer type with bit boundaries instead of byte
boundaries. The type is supported for compatibility
reasons, only. BIT types are supported for transient
values and cannot be stored in the database.

Synonyms: bit

REAL is an 8 byte floating value (double). Floating values do not
have size and precision parameters.

Synonyms: double, real

FLOAT describes a 4 byte floating value without size and
precision.

Synonyms: float

Time types Time types provide data for date and time points or
durations.

TIME Time values are provided as time measured in 1/100
seconds. Practically, a TIME value is an INT(10) value,
but it provides a number of features for displaying time
correctly, e.g. when converting TIME to STRING.

The default string format for TIME values is: hh:mm:ss,cc.

Synonyms: time

DATE Date values are stored as number of days since 1.1.1870.
Practically, a DATE value is an INT(10) value, but it
provides a number of features for displaying dates
correctly, e.g. when converting DATE to STRING.

The default string format for DATE values is: yyyy/mm/dd.

Synonyms: date

DATETIME is a timestamp value consisting of DATE and TIME value.

The default string format for DATETIME values is:
yyyy/mm/dd|hh:mm:ss,cc.

Synonyms: datetime, timestamp

Other data types In addition to text, numerical and time types, OSI supports
some special data types as described below.

BOOL Is a specific data type for storing Boolean values.
Typically, Boolean types appear as result of Boolean
expressions. Boolean values may have values true and
false (YES and NO), only.

Synonyms: BOOL, LOGICAL, boolean, logical

ANY defines data of any (or unknown) type. Variables of ANY
data type can be passed (or defined) by reference, only,
and never by value. Defining ANY type as direct value or
by value indicates a non-existing value (e.g. a function or
expression returning ANY or VOID does not return any
value).

VOID SetDate(); // does not return a value
VOID & GetInstance(); // returns an instance of any type

BINARY allows storing binary large objects. The size for binary
large objects is dynamically adjusted when storing data for
binary large objects.

Synonyms: BLOB, binary

5.2 Enumerated Data Types

Enumerated data types are enumerated value domains
defined by the user. A value domain consists of a number
of names (string values, which might be associated
explicitly with a numerical value. Regardless of the
definition of numerical values each enumerated value gets
a numerical value, which is stored instead of the string
value as data in the database or in variables.

ENUM Sex {
 male = 1,
 female = 2,
 undefined = 0
};

Type-based
enumerations

Type-based enumerations can be defined, when the
categories in the enumeration apply to a set of objects of a
given type. Often, in such a situation enumerators become
so-called discriminators, which associate a specialized
type with each category.

Considering Sex as a person property and supposing that
specialized types Man and Woman are defined inheriting
from Person, the following type-based enumeration could
be defined:

ENUM Sex (Person)
{
 male(Men) = 1,
 female(Woman) = 2,
 undefined(Person) = 0
};

Defined enumerations can be used as data type for local
and global variables, structure members and class
attributes.

5.3 Structure Definitions

Structure definitions are used for defining complex data
types, which are instantiated as transient instances or
within other complex data types (structure, class, …).

In contrast to class definitions, structure definitions do not
support inheritance, type properties, relationships and
references. Structures only contain members, which are
attributes.

Structure definitions are introduced by the STRUCT
keyword followed by the structure name. A list of structure
members defines the attributes of the structure.

STRUCT str_name
{
 member(*)
};

In contrast to C++, structure definitions do not support
declarators, i.e. structure definitions and declarations are
clearly distinguished.

Structures are typically used for storing transient data or
as type for attributes.

STRUCT Address
{
 STRING(6) zip;
 STRING(40) city;
 STRING(80) street;
 STRING(6) number;
};

Structure Member A structure may contain members of basic or complex
data type (user-defined types). Within a structure,
members can be referenced directly (imbedded) or by
reference.

By reference
members

When defining a structure member by reference, the
instance is not stored within the structure instance. So-
called “by reference” members behave like pointers, i.e.
when assigning a value to such a member, only the
pointer to the passed data is stored in the member.

As long as no value is assigned, no data is available for
the data, i.e. accessing the member will cause an error.

STRUCT Address
{
 STRING(6) zip;
 City &city;
 STRING(80) street;
 STRING(6) number;
};

In the example above, city has been replaced by a
complex data type City, which is referenced in the city
member.

More details about member definitions are described in
chapter “Members”.

5.4 Interface Definition

Interface definitions provide an intensional definition of a
complex data type. An interface definition can be
extended to the more specific class definition, which
contains extensional specifications in addition.

The main difference between an interface and a class is,
that an interface cannot define persistence, i.e. interface
definitions are considered as complex data types for
transient data. Thus, one cannot define extents, keys and
sort orders for an interface, which are specific properties
of persistent classes.

INTERFACE iname [inheritance_spec]
{
 [exports(*)]
};

Many of the features defined for the interface members
(exports) are describing extensional features, which are
not of interest in the context of an interface definition, but
OSI will accept them. Practically, OSI does not make any
difference between INTERFACE and CLASS definitions,
but for compatibility and conceptual reasons, it is
suggested to clearly distinct INTERFACE and CLASS
definitions.

In this chapter, only the member features relevant for the
interface are described. Extended member definitions for
class members are described in chapter “Member
Definition”.

inheritance Inheritance for an interface definition describes the
intensional specialization of a complex data type.
Extensional features provided for inheritance member
definitions should not be used, when defining interfaces.

Interface IPerson : PUBLIC Person person

The only qualifier supported for an interface inheritance
specification is INVERSE, which allows defining a
reference from a class instance to its interface.

Interface IPerson : PUBLIC Person person INVERSE p_interface

5.4.1 Interface Exports

The exports of an interface according to ODMG includes
the following features:

 Type declarations (type_dcl)
 Constant declarations (const_dcl)
 Attribute declarations (attr_dcl)
 Reference declarations (ref_dcl)
 Relationship declarations (rel_dcl)
 Exception declarations (except_dcl)
 Method definitions (method)

OSI does not support type and constant declarations in an
interface definition, i.e. those can be defined but will be
ignored.

Also exception declarations are not supported in OSI 1.0,
but are planned to be supported in future versions.

The interface definition supports all types of member
definitions. Features, however, related to key definitions or
extents (super set relations) should not be used in an
interface definition.

 INTERFACE IPerson : PRIVATE Person
 {
 ATTRIBUTE {
 INT(3) age = (Date() - birth_date).year;
 };
 REFERENCE Address current_location;

 RELATIONSHIP {
 Person receiver[0]
 INVERSE sender;
 Person SECONDARY sender[0]
 INVERSE receiver;
 };
 … Method definitions
 };

Attribute Attribute definitions are similar to structure members. An
interface containing only attribute definitions, could also be
defined as structure.

Details for the attribute definition are described in
“Attributes.

Initializing
attribues

Initial values for interface attributes are set, when an
interface object is constructed. The type of expressions
allowed for initializing depends on the programming
language that implements the interface. Usually, constants
are supported.

Reference Interfaces do not define references, but use pointers or
generic type attributes for implementing references.

Relationship Interfaces allow the definition of relationships, but it
depends on the implementation language for the interface,
how far relationships are supported.

Relationship definitions in interfaces are restricted to
options and qualifiers, which make sense for transient
data types.

Type options None of the defined type options for relationships are
supported for interfaces.

Collection
Options

Collection options are not supported in interface
definitions and will be ignored.

Data types As domain type or data type for relationships in an
interface definition, only interface types are allowed.

Base collections Base collections are not supported for relationships in
interface definitions.

Order keys Order keys are not supported for relationships in interface
definitions.

Methods For loading an interface definition, all method types
defined in ODABA can be referred to. When running OSI,
however, OSI functions are supported, only.

The details for defining an OSI function are described in
“Functions”.

5.5 Class Definitions

Class definitions in an OSI script file contain the structure
definition and a number of function definitions. One may
define transient class definitions in OSI function, which are
known to the application, only, but one may also extent
class definitions defined already in the resource database.

A class definition consists of a class header, class
properties and a class definition. The general format for a
class definition follows the rules defined below:

CLASS classname [guid] [inheritance_spec | extends_spec]
 [type_property_list]
{
 [exports(*)]
};

5.5.1 Class header

Besides the class name the class header contains the
inheritance specification. The general format of the class
header is:

CLASS classname [guid] [inheritance_spec | extends_spec]

Usually, class headers are simply defined as e.g.:
CLASS Person

guid The GUID option indicates that global unique identifiers
(GUID) are to be created for each instance of the class.

GUIDs can be created for classes, only, which inherit from
__OBJECT. Otherwise, the option is ignored.

inheritance Since OSI does not differ between interface and class, the
OSI class header supports both, the EXTENTS
specification for classes as well as the inheritance
specification for interfaces, i.e. one may use the
inheritance operator ‘:’ as well as the EXTENDS keyword
followed by one or more base type references.

CLASS Employee : PUBLIC Person person BASED_ON Persons
 INVERSE pers_ref

In contrast to other programming languages, base types in
OSI get a name (person in the example above), which
allows distinguishing between different bases types of the
same type.

Moreover, ODABA considers base types as class
members (specialization of relationships), without loosing
the advantages of inheritance. For compatibility reasons,
however, base types are defined as inheritance rather
than as class members.

Other extensions are the definition of base collections,
inverse references and several additional options, which
result from the concept of shared base instances.

When inheriting from more than one base type, base type
references are separated by comma.

5.5.2 Type Property List for Persistent Classes

Type property lists are important for persistent classes, i.e.
for classes, which will store instances in the database.
Application classes usually do not have a type property
list.

Persistent classes For test purposes or when creating view classes, it might
be useful in some case defining persistent classes in an
OSI application, as well.

OSI will create appropriate extent definitions and can store
data for these classes in a temporary database. This
temporary database, is deleted automatically when
terminating the application.

Thus, defining a persistent class in an OSI application
does not really create persistent instances for the class,
which are accessible after terminating the application.

Property
definitions

Type or class properties are defined as key and extent
definitions and alignment properties.

 CLASS Person
 (
 KEY {

 IDENT_KEY ik_pid(pid);
 sk_Name (name,first_name);

 };
 EXTENT Persons MULTIPLE_KEY OWNER

 ORDERED_BY (ik_pid UNIQUE SUPRESS_EMPTY, sk_Name);
)

Key definitions Key definitions allow defining one or more keys, which can
be used later on for creating indexes for collections to
provide fast access.

One of the keys can be marked as identifying key, which
usually determines the default order when accessing data
in a collection.

Details for key definitions and how to use keys are
described in “Keys and key references”.

Extent
definitions

Usually, one extent is defined for a persistent class, but
one may define also a number of extents inclusive specific
set relations (intersect, union etc.). Each extent must have
at least one order key (index).

For an extent, several collection options can be defined,
which are explained below.

Collection options Collection options (rel_option, ref_option,
extent_option) can be set to enable specific features
for an ODABA collection. Collection options for extents
include many collection options for references and
relationships.

GUID The GUID option indicates that global unique identifiers
(GUID) are to be created for each instance, which is
created for the extent. This option need to be set only,
when the referenced data type did not define the GUID
option.

GUIDs can be created for classes, only, which inherit from
__OBJECT. Otherwise, the option is ignored.

 EXTENT Persons GUID ORDERED_BY (ik_pid);

WEAK_TYPED An extent may refer to instances of different types, which
are typically specializations of a common base type. For
weak-typed extents, the data type for the extent defines
the common base type for the instances in the collection.

 EXTENT Persons WEAK_TYPED ORDERED_BY (ik_pid);

This extent may contain persons, but also women and
men, when Woman and Man have been defined as
specialized classes of Person.

For creating an instance of a given type, the type must be
set for the extent in advance (setType).

 Persons.setType(‘Woman’);
 Persons.insert(‘ID0033’); // creates a Woman instance

DELETE_EMPTY This option is ignored for extents.

MULTIPLE_KEY Extents are always considered as multiple indexed
collections and this option need not to be set but can be
defined.

 EXTENT Persons MULTIPLE_KEY ORDERED_BY (ik_pid);

UPDATE Extents are considered as resources being used by
different applications, i.e. this option is set by default.

OWNER An extent can be defined as the owner of the instances
referring to. When removing an instance from an owning
extent, the instance will be automatically deleted.

 EXTENT Persons OWNER ORDERED_BY (ik_pid);

In an ODABA database, each instance belongs to exactly
one owning collection. Thus, not owning extents must
always have a superset, which owns the instances.

 EXTENT Women ORDERED_BY (ik_pid) SUPERSET Persons;

Considering extents Woman and Men as subsets of
persons, which is the owning collection, Persons
becomes the superset for the Women extent.

NO_CREATE This option prevents instances from being created in an
extent. When the option is set, only existing instances can
be added to the extent. The option requires a superset,
always.

This option should never be set for owning relationships,
because one cannot create instances at all in this case.

 EXTENT Women NO_CREATE ORDERED_BY (ik_pid)
 SUPERSET Persons;

Defining the Women extent as NO_CREATE, one may add
persons to the Women extent, which already exist in the
Persons extent.

DEPENDENT This option is ignored for extent collections.

SHARED Shared collections are collections, which can be shared
between different transactions. This requires specific key
locking strategies to avoid assigning duplicate keys to
unique indexes. For extents, this option should always be
set.

 EXTENT Persons SHARED ORDERED_BY (ik_pid);

ORDERED_BY At least one unique order key must be defined for each
extent. The order key must be e key defined in the
structure the extent is based on.

More details about order key definitions are described in
“Keys and key references”.

SUPERSET Subset-super set relations are bi-directional and need to
be defined only in one direction. As long as the set
relations are consistent, one may define also both
directions.

One or more extents can be defined as super sets for an
extent.

 EXTENT Women ORDERED_BY (ik_pid) SUPERSET Persons;

When defining more than one superset, the subset can be
defined as intersection of its supersets.

 EXTENT Engineers ORDERED_BY (ik_pid) SUPERSET Persons;
 EXTENT Employees ORDERED_BY (ik_pid) SUPERSET Persons;
 EXTENT EmployedEngineers ORDERED_BY (ik_pid)
 SUPERSET INTERSECT Engineers, Employees;

In this example, the set of employed engineers is defined
as the intersection of Employees and Engineers.

Intersect hierarchies are maintained by the database
system, adding an instance to a subset, it is added
automatically to all supersets (which does not require the
intersect option). When deleting an instance from one of
the supersets, it is deleted auomatically from the subset
(regardless of the intersect option, as well). But when
adding an instance to one of the supersets, which already
exists in the other superset(s), the instant will be added
automatically to the intersect extent.

SUBSET Subset-super set relations are bi-directional and need to
be defined only in one direction. As long as the set
relations are consistent, one may define also both
directions.

One or more extents can be defined as subsets for an
extent.

 EXTENT Persons ORDERED_BY (ik_pid)
 SUBSET Men, Woman;

With the subset options extended set relations as union
and distinct can be defined, which are maintained by the
database system:

 EXTENT Persons ORDERED_BY (ik_pid)
 SUBSET UNION DISTINCT Men, Woman;

The definition defines Persons as union of Men and
Women, which are distinct to each other. In this case, you
cannot create a new Person in the Persons extent,
since the database system cannot decide, to which subset
the new Person should be added. Thus, the UNION
option implies that instances can be created for the
subsets, only. The DISTINCT option prevents the
application from adding the same Person to the Men and
Women extent. When adding a Person to the Women
extent, which already exists in the Men extent, it will be
removed from the Men extent before being added to the
Women extent.

5.5.3 Class Exports

Class exports are the elements defining a class. There are
different categories of class exports, that can be defined
for a class:

 (Inheritance/extends)
 Constants
 Types
 Exceptions
 Attributes
 References
 Relationships
 (Keys)
 Methods

o (C++ Functions)
o OSI Functions
o (Templates)
o (Forms)

OSI specific The current version of OSI/ODL accepts constants,
exception and type declarations, but does not support
those. When such declarations are defined in an ODL or
OSI file, they will be ignored.

When running an OSI script file, OSI functions are the only
type of methods, which is supported. When loading an
ODL schema, methods are considered by default as C++
functions. Other method types must be declared explicitly.

Base types and keys are not defined as class members
but can be accessed as class members. Those are
defined in the class header and in the type property list for
the class.

Support for templates and forms is planned for OSI
version 2.0. In OSI 1.0 one may already refer to forms
stored in the resource database (dictionary).

Member type keywords (attribute, reference, relationship)
can be placed in front of each member definition or once
for a block of class members.

 CLASS Person
 {
 ATTRIBUTE {
 CHAR pid[16];
 NOT_EMPTY STRING(40) name;
 STRING(40) first_name;
 DATE birth_date;
 Sex sex;
 TRANSIENT INT(3) age = (Date - birth_date).year;
 };
 REFERENCE Address location;
 REFERENCE STRING(4000) notes;

 RELATIONSHIP {
 Person children[0]
 BASED_ON Persons
 ORDERED_BY (sk_name UNIQUE)
 INVERSE parents;
 Person SECONDARY parents[2]
 BASED_ON Persons
 ORDERED_BY (sk_name UNIQUE)
 INVERSE children;
 Company company
 BASED_ON Companies
 ORDERED_BY (ik_name UNIQUE)
 INVERSE employees;
 Car NO_CREATE used_cars[2]
 BASED_ON company.cars
 ORDERED_BY (ik_cid UNIQUE)
 INVERSE users;
 };
 };

Attribute Attribute definitions are similar to structure members. A
class containing only attribute definitions, could also be
defined as structure.

Initializing
attributes

For initializing attributes an initial value or an expression
can be assigned to the attribute. The assigned value is
computed and set, when a new object instance is created
or when a persistent instance is read.

Constraint Constraints allow defining rules for validity checks on the
attribute. Persistent instances, which violate the
constraint, are not stored to the database.

When trying to assign a value in an expression, that
violates a constraint, an exception is raised.

Reference References in a class definition allow defining details for
an object instance. References behave like collection, but
do not support inverse references as relationships do.

References can be defined as persistent or transient
references. Only transient references may have an initial
value.

Details about reference definitions are described in
“References”.

Relationship Relationships in a class definition allow defining links to
other (independent) object instances. Relationships
behave similar to references, but support a number of
additional features.

Relationships in a class definition cannot be defined as
transient, i.e. relationships are always considered as
having the same persistence state as the class instance
has.

Details about reference definitions are described in
“Relationships”.

5.5.4 Class Extensions

A class definition in an OSI script file consists of the data
definition and a number of method definitions (OSI
functions, C++ functions etc). Since an OSL script
supports OSI functions, only, we will not consider C++
functions here.

One may define transient class definitions in your function,
which are known to the application, only, but one may also
extent class definitions defined already in the resource
database.

When extending class definitions defined in the resource
database, the class extension may contain only functions.
Class extensions for transient (application) classes may
contain properties as well as functions.

5.6 View definition

OSI supports two ways of defining views, as method
(similar to traditional queries) or as complex data type.
Here, the view definition as complex data type is
described. How to define a view as method is described in
section “OSI Function definitions”.

As complex data type, a view can be referenced in other
views as complex data types. One may also store view
instances to the database making the view persistent.

VIEW vname [from_spec] [where_spec] [group_spec] [having_spec]
 [type_property_list]
{
 [view_member(*)]
};

The view header defines the rules of providing view
instances from a number of data sources. The
view_member definitions define the view elements, i.e.
the members the view consists of. The view elements
correspond to the field definitions in the SELECT clause of
a traditional view.

A view may be defined as local view (class method) or as
global view. Local views refer to class members as data
source while global views refer to extents.

In order to instantiate a view, one may define extents in
the database model (global view) or view definition. For
local views, one may also refer via transient properties to
view definition by referring to the view as data type.

One may also call the view definition like a method in
program by means of the SELECT clause referring to a
pre-defined view structure..

5.6.1 View Header

Besides the view name the view header defines the view
source in terms of source definitions, selection criteria and
grouping specifications.

VIEW vname [from_spec] [where_spec] [group_spec] [having_spec]
 [order_spec] [type_property_list]

A view data type differs from a view expression, since it
defines a method rather than a collection of instances. For
local view definitions, the view header does not refer to
specific source data collections but refers to instance
properties of the owning data type definition in the FROM
type specification. Global view definitions usually refer to
extents or extent paths.

 For local view definitions, the view definition may consist
simply of a list of view members, in which case the view
definition simply provides a number of additional attributes
(or collection properties) derived from source instance
properties.

Data source The data source for a view definition consists of one or
more complex collection definitions (extent, class property,
property path), which define the source for the view.

VIEW Retired
 FROM (Person) …

Data source
definition

The FROM expression defines the base for a select
statement or view definition. The operands in the
parameter list should result in collections and are passed
as collection parameters to the FROM method.

In contrast to traditional view definitions the FROM clause
requires parenthesis around the complex data type list. As
long as the view refers to a simple data source, one may
omit the FROM clause when defining local views (open
view definition).

 FROM (Person, Company)

Multiple sources When defining several operands in the operand list, data
types for each operand become base types for the FROM
data type results in an instance type containing Person
and Company as base types). Base types may be referred
to by base type member name, which by default is the
collection name passed in the FROM operand list.

By preceding the collection references with names, one
may explicitly assign base type member names.

 FROM (pers = Person, comp = Company)

Naming base
types

When the data source is a property path, each path
element becomes a base type for the FROM data type. In
this case, names for base type members correspond to
property names in the path.

Property path Property path data sources define an inner join operation,
i.e. the path in the example below provides all children
that have one or more cars and its parent. Persons that do
not got children or persons with children that do not have
cars are not element of the FROM collection.

 FROM (Person.children.cars)

Operation Instead of a complex data type, one may define an
operand as view source. When the data source is a result
of an operation, a base type name has to be defined
explicitly.

 FROM (set<Person> relatives = Person.GetRelatives)

One may omit the type definition, when the operation is
defined in the resource data base or in a pre-loaded OSI
function, which provides the type in the return value
definition.

Open views When not defining FROM operands (omitting FROM clause),
the view is considered to be an open view. Typically, open
views are defined a local views for the data type they
apply on. In case of open views, the view may be
referenced with a preceding collection as data source by
referring to the local view in the SELECT operation.

 Persons.SELECT(PersView);

The view employment can apply to any Person collection,
i.e. the Persons extent, but also on the children
collection of ‘Miller’.

When names have been assigned to source elements,
view parameters can be referred to by name:

Data sources defined in the FROM clause define the scope
for the properties and methods referenced in the WHERE
expression as well as for the view member definitions and
aggregation function sources for grouping definitions.

Where The WHERE clause describes a precondition for filtering
data in the FROM data source. The filter condition is an
expression returning true or false, which must be defined
in terms of the FROM operation data type, i.e. the condition
may refer to FROM data type properties, only. When a
WHERE filter condition has been defined, instances in the
FROM data source returning false will be ignored.

// select unemployed persons
 FROM (Person) WHERE (company.count == 0)

Group By Grouping provides a way of aggregating data. The
grouping clause defines the way, instances form the data
source are grouped.

// Group Persons by age, sex
VIEW myView
 FROM (Persons)
 GROUP BY (sex,
 string inc_group = (income < 1000 ? 'poor' :
 income < 5000 ? 'medium':
 income < 100000 ? 'rich':
 'very rich'),
 string age_group = (age < 20 ? 'young' :
 age < 50 ? 'middle':
 'old'))
{ ATTRIBUTE {
 string age_group;
 string inc_group;
 Sex sex;
 INT(10,2) inc = sum(income);
 INT(10,2) avr_inc = average(income); }; };

A grouping is defined by an operand list, where each
operand defines a grouping attribute (dimension). By
default, dimensions also define the order key for grouping
instances. GROUP operands should define attributes and
are passed to the GROUP method.

Each GROUP instance contains grouping attributes
(dimensions) and a collection partition containing all
instances from the FROM data source matching the
grouping attributes. The partition property becomes
the default source for aggregation functions.

In case of GROUP definition in a view definition or SELECT
statement, source operands for view members (SELECT
parameters) refer to the GROUP data type. Aggregation
functions without calling object refer to partition, i.e.
property names passed to aggregation functions must be
defined in the data type for partition instances, i.e. in the
FROM data type.

Attributes Operands in the operand list may be attribute names or
property paths referring to attributes defined in the FROM
data type (e.g. (age, sex)) or data type of calling object.
Grouping attributes usually refer to elementary data types,
but may also refer to complex or user-defined
enumerations.

// Group by sex
 GROUP BY (age, sex)

Named
attributes

By preceding the attribute references with names, one
may explicitly assign attribute names to grouping
attributes.

// Group by sex
 GROUP BY (age_group = age, sex)

Operation When the data source is an operation, an attribute name
has to be defined explicitly. One may omit the type
definition, when the operation is defined in the resource
data base or in a preloaded OSI function, which provides
the type in the return value definition.

// Group by sex
 GROUP BY (string age_group = GetAgeGroup(), sex)

Instead of referring to a function, one may also define
inline expressions as data source.

Having The HAVING clause describes a filter as post-condition for
finally filtering data. The filter condition is an expression
returning true or false, which must be defined in terms of
the final view structure, i.e. to properties defined as view
members in a view definition or SELECT clause.

When a HAVING filter condition has been defined, view
instances returning false for the condition will be ignored.

// select persons by family income
VIEW myView
 FROM (Persons)
 HAVIMG (family_income > 100000)
{ ATTRIBUTE {
 string name; string first_name; int age; Sex sex;
 int(10,2) family_income = GetFamilyInc(); }; };

Aggregation
functions

In case of grouping, view members may refer to default
aggregation functions (see “Aggregation functions”)
without preceding the function call with a collection name
(calling object). In this case, partition is assumed as
default calling object. Using default aggregation performs
better than calling each aggregation function with the
collection name, since the partition collection is read only
once for evaluating all aggregation functions.

// Group Persons by age, sex
View myView
 FROM (Persons)
 ORDER BY(string age_group = (age < 20 ? 'young' :
 age < 60 ? 'middle':
 'old') DESC,sex)
{ ATTRIBUTE { string age_group;
 int(10,2) tot_income = sum(income};
 int(10,2) avr_income = avarage(income};
 int(10,2) dev_income = deviation(income}; }; };

Order By Ordering allows defining an instance order for created
view instances. One may order instances by predefined
key referring to a key name defined for the view data type
or by order attributes.

// Order Persons by age_group
VIEW myView
 FROM (Persons)
 ORDER BY(string age_group = (age < 20 ? 'young' :
 age < 60 ? 'middle':
 'old') DESC,sex)
{ ATTRIBUTE { string name; string first_name;
 int age; Sex sex; }; };

Key order For ordering the view by key, the order key has to be
defined for the view data type (data type key definition).In
this case, the ORDER BY expression simply contains the
name of a defined key.

// order by keys 'pk'
 ORDER BY (pk)

Attributes Operands in the order operand list may be attribute names
or property paths referring to attributes defined in the
FROM data type (e.g. (age, sex)) or data type of calling
object. Grouping attributes usually refer to elementary
data types, but may also refer to complex or user-defined
enumerations.

// order by age, sex
 ORDER BY (age, sex)

Named
attributes

By preceding the attribute references with names, one
may explicitly assign attribute names to grouping
attributes.

// order by age sex
 ORDER BY (age_group = age, sex)

Operation When the data source for an order operand is an
operation, an attribute name has to be defined explicitly.
One may omit the type definition, when the operation is
defined in the resource data base or in a preloaded OSI
function, which provides the type in the return value
definition.

// Order by age group, sex
 ORDER BY (string age_group = GetAgeGroup(), sex)

5.6.2 Type Property List for Views

Type properties allow defining persistent views, i.e. for
views that will store instances in the database. There is
always a risk storing views in a database, since views are
not updated automatically, when instances or collections
the view is based on, do change.

Typically, external views are used for making a view semi-
persistent, i.e. storing the view results in a transient or
temporary extent, which is automatically deleted, when the
application terminates.

The advantage of semi-persistent views is, that semi-
persistent views support all features of persistent
collections, as multiple sort orders, multiple access to view
instances etc. That means, semi-persistent views can be
accessed as ordinary extents or collections as long as the
application is active.

Type properties Type or view properties are defined as key and extent
definitions.

 VIEW Employment
 (
 KEY {

 IDENT_KEY ik_pid(pid, cid);
 sk_Name (cid, pid);

 };
 EXTENT …
)

Key definitions Key definitions allow defining one or more keys, which can
be used later on for creating indexes for collections to
provide fast access.

When the view defines a GROUP BY clause, an identifying
key with a temporary name KEY_nnnnnnnn is
automatically defined, which consists of one all attributes
included in the in the GROUP BY clause.

Otherwise, one of the user-defined keys can be marked as
identifying key, which usually determines the default order
when accessing data in the view collection.

View key components may refer to defined view members,
only.

Extent
definitions

For a view type any number of view extents can be
defined. A view extent is automatically filled (evaluated)
when being accessed or opened..

 VIEW Employment
 (
 …
 EXTENT TRANSIENT Employments;
)

Usually, view extents are transient, i.e. they are built,
when referring to (opening) a view extent. One may,
however, store extents to the database. This might be
useful, when an extent is used many times and when the
content of the extent (i.e. the source collections) do not
change.

One may, however define view extents globally by
referring to the view definition as data type for the extent.
In both cases, data source(s) for the view must have been
defined as global access paths

In order to use local views defined in the context of a
complex data type, one may define transient collection
properties for the data type that refer to the local view
definition as data type. In this case, the view collection will
be updates for the currently selected instance when being
accessed.

 VIEW Employment
 (
 …
 EXTENT Employments ORDERED_BY(ik_pid UNIQUE, sk_name);
)

When defining persistent view extents, at least one unique
sort key must be defined.

5.6.3 View Members

View members (view_member) are the properties, the
view consists of. View properties are either attributes or
references. You cannot define relationships or base
structures (inheritance) for a view definition. In order to
refer to another view, one may refer to an appropriate
view collection (extent or property) in the FROM clause.

Beside view properties (attributes and references), the
view allows defining methods, that operate on the complex
data type defined by the view.

When the view definition contains a GROUP BY clause, a
partition collection property (transient reference) is
implicitly defined as view property.

View source The source instance for evaluating view properties is
either the GROUP BY instance (when GROUP BY clause
has been defined) or the FROM instance for views without
grouping.

Transient view
members

View members defined as transient members are not
considered as view members evaluated on base of view
source, but allow defining post calculations, i.e. those are
evaluated in the context of the view instance, i.e.
evaluation functions or expressions may refer to view
members, only.

Attributes Attributes are defined similar to attributes in the complex
data type definitions (class or interface). Attributes usually
require a source operand which may be passed as
SOURCE or initial value based on the complex data type of
the source defined in the FROM or in GROUP BY clause.

VIEW Retired FROM (Person)
 FROM (Person) WHERE (company.count == 0)
 HAVING (age_years) >= 65)
{
 ATTRIBUTE {
 INT(10,2) ch_income = children.sum(income);
 INT ch_count = children.count();
 INT(3) age_years SOURCE((Date – birth_date).year);
 TRANSIENT INT(10,2) ch_avr_inc = income / ch_count;
 … };
};

When not defining an attribute source, the attribute name
is considered to be an operand, i.e. it refers to a member
with the same name in the view source data type. The
shortest way for defining a view member is defining just an
attribute name preceded by a type definition, which is also
considered to be an operand based on the source data
type.

VIEW Adult FROM (PERSON) WHERE (age > 18)
{
 ATTRIBUTE {
 STRING(40) name;
 STRING(40) first_name;
 };
};

When no data source is defined, the member name is
assumed to be the operand name, as well, i.e. the view
member refers to the member in the source data type with
the same name.

View attribute definitions follow the general rules for
defining attributes and references (see chapter
“Attributes”). Specific details for the assignment operand
are described in “Query operations – SELECT”).

References Reference collections are defined similar to references for
other complex data type definitions (class or interface).
The difference is, that each reference requires an initial
value or SOURCE operand, which is an expression or
function based on the complex data type of the view
source. The result of the expression must be a complex
data type.

VIEW Grown_Up_Children FROM (Person)
{
 …
 REFERENCE SET<Person> adults = children.WHERE(age > 18);
};

One may also refer to view definitions as complex data
type for a reference.

VIEW Adult FROM (Person) WHERE (age > 18)
{
 ATTRIBUTE {
 STRING(40) name;
 STRING(40) first_name;
 };
 REFERENCE SET<Person> young_parents = parents.YoungParents();
};

5.7 Aggregation schema

An aggregation schema is an extended view definition. In
contrast to a view definition, the collection resulting from
an applied view definition contains instances on different
hierarchy levels, while an ordinary view provides
(aggregated) instances on the lowest aggregationlevel
defined by the GROUP clause.

A view definition becomes an aggregation schema by
adding an aggregation type to the view definition:

VIEW vname [from_spec] [where_spec] [group_spec] [having_spec]
 aggr_option_list [type_property_list]
{
 [view_member(*)]
};

The position for the aggregation option may be at any
place in the view header.

VIEW M<Aggr (INT(10,2) time = sum(duration))
 FROM (TimeSheet) AGGREGATE(simple)
 GROUP BY (STRING(10) personId = person(0).id,
 STRING(10) projectId = task(0).GetProject().id,
 IDate iDate = GetIDate(start));

Similar as defining an aggregation schema within the
database dictionary, one may use an ad-hoc aggregation
schema using the SELECT statement. The example in the
following sub-chapter refers to the SELECT statement, that
is schema definition and execution at once.

5.7.1 Aggregation example

The following chapter describes the aggregation example
as being provided with the PMA example application.

The PMA example is based on a project management
system that stores time sheets per project and person.
The grouping level is projectId(STRING),
personId(STRING), iDate(IDate). IDate is a
complex grouping dimension derived from date, which has
got three attributes (year, month and day). Complex
dimension attributes provide aggregation levels for each
subordinated dimension attribute, i.e. aggregation levels
provided are year, year, month and year, month, day.

The aggregated variable is the time spent on a certain
project or by a certain person or in a certain time interval
(time sheet duration).

STRUCT IDate {
 INT(2) year;
 INT(2) month;
 INT(2) day; };

SELECT (INT(10,2) time = sum(duration)) HIERARCHY(DELAYED)
 FROM (TimeSheet)
 GROUP BY (STRING(10) personId = person(0).id,
 STRING(10) projectId = task(0).GetProject().id,
 IDate iDate = GetIDate(start));

Notes: GetProject() provides the project a task in a
hierarchical task structure belongs too. This may also be
the project itself, which also is a task.

GetIDate() is a function that creates an IDate
structure from a database date value.

5.7.2 Aggregation levels

Aggregation levels defined by means of an aggregation
schema contain view instances aggregated on different
levels. A higher aggregation level is always created by
reducing one of the dimensions in the dimension level.

personID and projectID are elementary dimensions,
that only provide dimension level 1 and 0 (dimension has
no value on this level). iDate provides dimension levels 3
(year, month, day), 2 (year, month),1 (year) and 0.
Thus, the possible aggregation levels in this example look
like following:

Eg. Level 112 means level dimensions personID,
projectID, (year, month). The numbers identifying an
aggregation level are called level identifier. In an
aggregation collection, level identifier become an attribute
of aggregated instances. Maximum 8 aggregation
dimensions with maximum 9 dimension levels for each
dimension are supported.

The red line in the picture shows the aggregation levels for
a simple aggregation. Arrows between level dimensions
point to possible next higher dimensions in the
aggregation schema. In case of delayed aggregation, only
the view level (113 in the example) will be created. Other
level are created when being requested, i.e. when being
accessed.

When accessing a level that is not the next higher level of
an aggregation level already created, the system looks for
an optimal solution.

In case of complete aggregation, all aggregation levels
are created when creating the aggregation collection.

5.7.3 Accessing aggregation collections

Because of different aggregation levels and specific
relationships stored in an aggregation collection,
aggregation collections become much more complex than
ordinary collections.

In order to provide access to a certain level within an
aggregation collection and to subordinated instances,
additional functionality is provided for an aggregation
collection by the View access class. The class inherits
from Property but provides additional functionality for
views. Those functions are available in general for each
kind of view result, but for ordinary views the do not make
much sense.

View functions Extended view functionality provides several service
functions with a default implementation that might be
overloaded in an aggregation schema. Extended
functionality supports special behavior resulting from the
level identifier:

 view - Get view handle from Property instance
 levelCollection - Get all instances for a certain

level identifier
 levelPartition - Get level partition

relationship (subset for an aggregation instance on next
lower level - drill down)

 levelParent - Get levelParent relationship
(parent instances for a passed aggregation level)

 levelNumber - Get level number from level
identifier (character level identifier converted to
integer)

 levelValue - Provide level value (dimension
attributes)

 levelName - Get hierarchy level name for selected
aggregation instance

 levelIdentiferName - Get hierarchy level name
for passed level identifier

 levelIdentifier - Get level identifier
 levelDisplayValue - Get level display value for

level attributes

User functions In order to support user names for levels and keys, the
application may implement service functions in the view
class that overload functions named above:

 LevelName - Provide hierarchy level name for
selected aggregation instance

 LevelIdentiferName - Provide hierarchy level
name for passed level identifier

 LevelDisplayValue - Provide level display value

In addition, the view class may implement an application
specific Aggregate function, which provides user defined
aggregation algorithms for all view members, that do not
have got a source definition and which are not transient.

5.8 Template Data Types

Template data types are kind of meta-types describing the
way one or more instances of a given type are managed.
Within OSI, template data types are typically collection
data types, but other template data types can be defined
as well.

Template data types are defined in general as:
 template_type_name < simple_type_spec >

OSI allows the definition of any template data type (e.g.
when defining C++ members) for being loaded into the
dictionary, but OSI supports only a limited set of template
types according to the ODMG recommendations when
running OSI functions.

Collection types Four types of collections are recommended by ODMD:

 Set
 List
 Bag
 Array

These four types differ in order and unique constraint.
Both, order and unique constraints are handled as index
options in ODABA and not as collection options. Thus,
OSI supports the four template types for collections, but it
will not differ between them.

 SET<Person> children; // same as BAG<Person> or LIST<Person>

Collection types are typically used for defining references
and relationships. But collection types can be referred to
also in member definitions for structure members,
attributes, parameters or variables. In this case, collection
types define transient data and can be used in different
ways.

One way is defining references to collections stored
somewhere else. The other possibility is creating transient
collections.

Standard template
types

Besides collection types OSI supports string template
types, which are handled the same way as OSI STRING
type. Other standard template types as INTERVALL,
VECTOR etc. can be defined, but are not supported in
OSI functions. OSI supports those definitions in order to
support other program languages as C++ or Java when
loading schema definitions to the dictionary.

5.9 Member Definitions

Member definitions have been referenced when defining
structures, interfaces, classes and views. Practically, the
definition of members is always the same, i.e. one may
define base collections for a relationship in an interface
definition, even though this will not have any effect.

In the previous chapters, the features supported for
members defined in different contexts, have been
explained. Here, the maximum features of member
definitions will be discussed.

Members are the elements, a structure, interface, class or
view consists of. There are different categories of
members, that can be defined:

 (Inheritance/extends)
 Constants
 Types
 Exceptions
 Members
 Attributes
 References
 Relationships
 (Keys)
 Methods

o (C++ Functions)
o OSI Functions
o (Templates)
o (Forms)

OSI specific The current version of OSI/ODL accepts constants,
exception and type declarations, but does not support
those in OSI utilities. When such declarations are defined
in an ODL or OSI file, they will be ignored.

When running an OSI script file, OSI function is the only
type of methods, which is supported. When loading an
ODL schema, methods are considered by default as C++
functions. Other method types must be declared explicitly.

Inheritance/extents specifications are, according to
[ODMG], not explicitly defined as members. In ODABA,
however, inheritance or extents specifications are
considered as members (specialized relationships) and
can be accessed as such. For compatibility reasons, they
are defined, however, in the corresponding headers
(class, interface, view).

Support for templates and forms is planned for OSI
version 2.0. In OSI 1.0 you may refer to forms only, which
are stored in the resource database (dictionary).

Member type keywords (attribute, reference, relationship)
can be placed in front of each member definition or once
for a block of interface members.

5.9.1 Inheritance

Inheritance describes the intensional specialization of a
complex data type. Since OSI always supports both,
intensional and extensional member specifications, the
inheritance specification supports also extensional
features.

… [inheritance_spec | extends_spec]

OSI inheritance specifications are supported as EXTENTS
specification for classes, but also as the inheritance
specification, i.e. you may use the inheritance operator ‘:’
as well as the EXTENDS keyword followed by one or more
base type references.

CLASS Employee : PUBLIC Person person BASED_ON Persons
 INVERSE pers_ref

When inheriting from more than one base type, base type
references are separated by comma.

Since OSI considers inheritance specifications as member
definition (specialized relationships), inheritance
specifications may get a name (person in the example
above), which allows distinguishing between different
bases types of the same type. Moreover, several
additional attributes are supported for inheritance
specifications, which are inherited from relationship
definitions.

5.9.2 Members

Member definitions describe properties of a complex data
type. Member definitions are used in structure definitions,
but also for defining variables or parameters. The general
definition for a member is:

 domain_type declarators;

In variable declarations or within a structure definition, a
member definition may contain one or more declarators.
As parameter, only one declarator per member definition
is allowed.

Data type The domain type or data type defines a basic (literal) type
or a user defined type (enumeration or complex data type
as class, interface or structure). Data types supported by
OSI are described in detail in chapter “Data Types”. The
following examples illustrate the use of data types in
member definitions.

Text types Text type members are STRING, WSTRING, CHAR and
CCHAR (coded character). The difference between CHAR
and STRING types is that CHAR types are filled with
spaces, while STRING types are 0-terminated.

Text type members usually have a size limitation, which
defines the maximum size for the value (default: 256).

 CHAR(16) pid;
 STRING(40) name; // same as string<40> name;

There is a difference between size and array definitions.
The size is always defined in connection with the type (as
in the example above)

Array dimensions are defined in connection with the
declarator.

 CHAR(16) pid[5];
 STRING name[3]; // array wir 3 name dynamic strings;

When defining size and dimension, an array of strings or
character values with the given size is defined.

Text type members always reserve the defined number of
bytes in the stored instance when being defined as
members or variable. Thus, large text fields should be
stored as STRING reference or MEMO member.

String definitions without size specification are allocated
as dynamic string variables, which allocate size on
requirement.

Numeric types In principal, OSI differs between floating (REAL) and
integer (INT, UINT) types, i.e. each numerical value is
stored either as float or as integer.

Numeric types do have a size, which defines the
maximum number of significant figures stored in the
number (e.g. size 5 for 100.01)

 REAL income; // same as double income;
 INT(3) age; // same as short age;

Depending on the size, the type corresponds to the
appropriate standard type (float, double, short, long, long
long), which can also be used in the definition.

OSI supports decimal types (DEC), which are considered
as integer with a precision factor. DEC and INT definitions
are equivalent.

 DEC(7,2) income; // same as INT(7,2) income;

The factor can be negative, in which case the stored value
is multiplied with an appropriate factor (e.g. with 1000 for
DEC(5,-3)).

Date/time types Date (DATE) and time (TIME) can be defined as well as
time stamps (DATETIME). DATE and TIME are considered
as integer type and can operate with integer values. A size
specification for DATE or TIME influences the default
presentation of the member, but not the way the value is
stored.

 DATE(6) birth_date; // 53/06/30
 DATE(8) birth_date; // 1953/06/30

Timestamp (DATETIME) is a structured field containing a
date and a time value.

 DATETIME last_update;
 …
last_update.date = SystemClass::Date();
last_update.time = SystemClass::Time();

Date and a time value can be accessed as structure
members of the DATETIME structure.

Other literal
types

Other literal types supported are BIT, BOOL, and ANY (or
VOID). VOID is valid for references and relationships and
pointer members, only.

Complex data
types

Members may also refer to complex (user-defined) data
types, which might be a structure or class type.

 Address location;
 …
 Print(“City :” + location.city);

In this case, members of the related complex data type
can be accessed via appropriate property paths.

Template data
types

Members may also refer to template data types, especially
collection data types. Other template data types can be
defined, but cannot be processed in an OSI function,
except string template types, which are handled the same
way as STRING data type.

 SET<Person> grand_children;

Referring to a collection type in a member definition
defines always a reference to a collection, but not the
collection itself. For defining a collection, you may define
an extent (global collection) or a reference or relationship.

Assigning a value (collection) to a collection member
defined by value will create a separate cursor for
accessing the collection.

 SET<Person> my_persons = your_persons;

In the example above, instances selected in my_persons
collection and your_persons collection may differ.

 SET<Person> &my_persons = your_persons;

When defining collection type members by reference,
my_persons will share the cursor with your_persons,
i.e. changing the selection in one collection variable
automatically changes the selection in the other variable.

Declarators Declarators will list one or more member names with their
qualifiers.

 [ref_symbol(*)] identifier [fixed_array_size(*)]
 [assigned_value]

Reference type Declarators may be preceded by a reference type. In OSI,
the ‘&’ symbol is allowed, only, to indicate by reference
properties (transient attributes, variables, structure
members, parameters). Loading an ODL schema, pointers
of any level can be defined as transient fields. Thus, ‘*’ or
‘**’ are valid reference types as well for defining C++
methods, but those are not supported in OSI functions.

“by reference” members must be defined as transient
when being used as class attributes.

Arrays By default, member declarators have dimension 1. By
defining a fixed array size, array members can be defined.

 Address location[3]; // reserves three addresses

Array members are considered as collections and can be
accessed by index.

address = location(3); // same as: address=location.get(3);
address = location[3]; // same as: address=location.provide(3);

OSI supports two access operators for collections, which
operate different for collection types. For arrays, both
operands works in the same way providing the instance at
the defined position.

For text types, the dimension specification is interpreted
as size, as long as no size has been defined.

Array members will reserve space for all array elements in
the object instance, i.e. OSI does not support dynamic
array members. For defining dynamic arrays, a reference
or a collection data type should be defined rather than a
array member.

Initializing
members

For initializing members, an initial value or an expression
can be assigned to the member. The time point for
initializing a member depends on the context, in which the
member is defined (as variable, structure member,
parameter or attribute).

 Sex sex = ‘female’;

Instead oc assigning constants or expressions, one may
assign OIF data strings for complex variables. When the
data type is a C++ class data type providing an OSI
interface, one may also initialize variables by calling the a
constructor of the class. A constructor is a class member
function with the class name as function name.

 Color my_color(100,100,100);

Constructors might be provided also for persistent classes
by implementing an OSI function with the same name as
the data type. One may also call constructors from within
the function code.

VARIABLES
 Color my_color; // create variable
PROCESS
 my_color.Color(100,100,100); // initialize variable

5.9.3 Attributes

Attribute definitions describe properties of a complex data
type, which always exist in an object instance. The
general definition for an attribute is:

 [type_ref_options(*)] domain_type declarators;

Structure types consist only of attributes, while other
complex data types may define different member types. In
this case, attributes must be marked as such in the
definition.

 ATTRIBUTE {
 STRING(40) name;
 STRING(40) first_name;
 };
 ATTRIBUTE INT(7,2) income;

You may mark each attribute separately or define an
attribute block, but you may also mix both ways..

Type options The type reference defines the type (or generic type) and
additional properties (as size and precision), when
available for the type.

Several options can be defined for an attribute. Options
are defined before the declarator list and apply to all
declarators in the list. .

TRANSIENT Transient attributes can be defined as direct (imbedded)
members or as “by reference” members. Attributes are
transient by default, when being defined in a structure or
interface or in a transient class, i.e. in a class that does
not create persistent instances. In persistent classes,
transient attributes are available within the application, but
are not stored with the instance to the database. For
persistent classes, transient attributes must be defined
explicitly.

ATTRIBUTE TRANSIENT INT(3) age = (Date - birth_date).year;

STATIC Static attributes can be defined for transient instances or
as transient attribute in persistent instances, i.e. ODABA
considers static fields by default as transient.

Thus, one could add a static attribute to the Person class:
ATTRIBUTE STATIC TRANSIENT INT no_of_females;

Static attributes are created only once for all class
instances.

NOT_EMPTY The NOT_EMPTY option defines a default constraint.
Defining an attribute as NOT_EMPTY will deny storing
instances, for which the attribute value is empty. The
empty state is defined depending on the data type.

ATTRIBUTE NOT_EMPTY STRING(40) name;

VIRTUAL Virtual properties are properties, which can be redefined in
specialized data types. Redefinition includes changing the
type or the size of the property, but not the property type,
i.e. one cannot redefine an attribute as a relationship.

privilege option Privilege options define the access rights to the property.
So far, this feature is not supported by ODABA, i.e.
ODABA considers all properties as public. This will be
changed, however, in version ODABA 10. Hence, it is
suggested to set the option properly.

Supported privilege options are:

 PRIVATE
 PROTECTED
 PUBLIC

In contrast to C++, this qualifier must be defined for each
property separately.

Default: PROTECTED
ATTRIBUTE PRIVATE DATE birth_date;

Data type The domain type or data type defines a basic (literal) type
or a user defined type (enumeration or complex data type
as class, interface or structure).

Attributes may refer to all data types supported for
members. When referring to collection data types, the
attribute must be marked as transient or it must be defined
in a transient reference.

Declarators Declarators will list one or more attribute names with their
qualifiers. Attribute declarators are member declarators
with a constraint extension.

 [ref_symbol(*)] identifier [fixed_array_size(*)]
 [assigned_value] [constraint]

Details for member declarators are described in chapter
“Members”.

Initializing
attributes

For initializing attributes an initial value or an expression
can be assigned to the attribute. The assigned value is
computed and set, when a new object instance is created
for the complex data type, which defines the attribute.

ATTRIBUTE Sex sex = ‘female’;

When defining initial values for transient attributes in
persistent instances, the initial value is computed and set
always, when an instance is read. For transient data types
the member is initialized, when the object instance is
constructed,

ATTRIBUTE INT(3) age = (Date - birth_date).year;

When defining an expression as assigned value, this must
be a valid expression (operand) within the class definition,
i.e. the expression may refer to global variables as well as
to class variables.

Constraint Constraints allow defining rules for validity checks on the
attribute.

ATTRIBUTE DATE birth_date
 CONSTRAINT(birth_date > ’1879/12/31’);

The constraint expression (operand) must be a valid
expression within the class definition, i.e. the expression
may refer to global variables as well as to class variables.

5.9.4 References

References describe details belonging to the object.
References can be defined in class definitions, only.
References may refer to complex data types, text types
(STRING) and binary large objects (BLOB). References
cannot refer to any literal data type except STRING and
BLOB.

The general definition for a reference is:
[type_ref_options(*)] domain_type
 [ref_option(*)] ref_declarator(s)

A reference may refer to one or more instances of a given
type. A singular reference just refers to the type:

REFERENCE Address location;

Multiple references are defined as template data types or
by defining a dimension. The following specifications have
the same effect:

REFERENCE SET<Address> locations;
REFERENCE Address locations[];
REFERENCE Address locations[0];

Using template types corresponds to the ODMG
suggestions, while the specifying a dimension is a specific
ODABA feature, which allows limiting the number of
instances in a collection.

REFERENCE Address locations[3];

Type options The options (type_ref_options), which can be defined for a
reference, are similar as for attributes, except static,
which is not supported.

TRANSIENT A transient reference in a persistent structure allows
computing collections for each instance at run-time. Thus,
you can avoid storing redundant information, which can be
calculated at runtime.

VIRTUAL Virtual references can be overloaded in a specialization of
a class definition. Thus, specializing the type allows
specializing the type of referenced objects. Type
specialization for virtual references must inherit from the
reference data type in the base class.

NOT_EMPTY The NOT_EMPTY constraint for a collection accepts empty
collections until the first instance is added to the collection.
Later on, the collection can never become empty. Defining
NOT_EMPTY for a singular reference allows associating an
instance only once, i.e. one should never use this option
for singular references.

privilege option Privilege options define the access rights to the reference.
So far, this feature is not supported by ODABA, i.e.
ODABA considers all properties as public. This will be
changed, however, in version ODABA 10. Hence, it is
suggested to set the option properly.

Supported privilege options are:

 PRIVATE
 PROTECTED
 PUBLIC

In contrast to C++, this qualifier must be defined for each
property separately.

Default: PROTECTED

Collection options Collection options (ref_option) can be set to enable
specific features for an ODABA collection. Collection
options make sense for collections defined in classes.
Collection options are defined before the declarator list
and apply to all declarators in the list.

GUID The GUID option indicates that global unique identifiers
(GUID) are to be created for each instance, which is
created for the reference collection. This option need to be
set only, when the referenced data type did not define the
GUID option.

GUIDs can be created for classes, only, which inherit from
__OBJECT. Otherwise, the option is ignored.

REFERENCE Address GUID location;

WEAK_TYPED A reference may refer to instances of different types,
which are typically specializations of a common base type.
For weak-typed references, the data type for the reference
defines the common base type for the instances in the
collection.

REFERENCE Address WEAK_TYPED location;

In this case, the reference can store CompanyAddress or
PersonAddress in the collection, which are supposed to
be specializations for Address.

For creating an instance of a given type, the type must be
set for the collection in advance.

REFERENCE BAG<Address> WEAK_TYPED location;
 …
 location.setType(‘CompanyAddress’);
 location.insert; // creates a company address

DELETE_EMPTY For avoiding the deletion of instances, which refer to other
objects in the collection, the DELETE_EMPTY option can
be set. In this case, an instance of the class can be
deleted only, when the referenced collection is empty.

REFERENCE Address DELETE_EMPTY location[3];

MULTIPLE_KEY When changing from single ordered collection to a
multiple ordered collection, a new schema version must
be created for the database. This can be avoided when
setting the MULTIPLE_KEY option for single ordered
collections.

REFERENCE Address MULTIPLE_KEY location[3];

UPDATE The UPDATE option indicates, that instances can be
inserted to or deleted from the reference, without updating
the instance containing the reference. This option
increases the accessibility in multi-user environments,
since several users may update the collection without
getting conflicts.

REFERENCE Address UPDATE location[3];

Data types The domain type or data type defines a basic (literal) type
or a complex data type (class type).

Text types References can be used to refer to large text fields
(STRING, MEMO). When storing large text fields as
references, the space reserved for the text field depends
on its current length.

REFERENCE STRING(4000) notes;

The size passed to the type defines the maximum number
of characters in the field. Array dimension are not
supported for text references, i.e. text references are
always singular.

Binary large
objects

References can store binary large objects (BLOB), e.g.
images or movies. BLOB properties can only be defined as
references.

REFERENCE BLOB image;

No maximum size can be defined for a BLOB reference.
Array dimension are not supported for BLOB references,
i.e. BLOB references are always singular.

Any type You may define an untyped reference, which may refer to
instances of any data type (VOID or ANY). Defining an
untyped reference, the first instance added to the
collection determines the type of the reference, i.e. an
untyped reference may contain instances of any type, but
all instances are of the same type.

REFERENCE VOID objects[]; // same as: any objects;

For defining a reference containing a mixture of instances
of any type, the reference must be defined as weak-typed
reference.

REFERENCE VOID WEAK_TYPED objects[];

Complex data
types

Typically, references refer to object instances of complex
data types (user-defined types). References to
enumeration types are not allowed.

REFERENCE Address location;

By default, references are singular, i.e. it may refer to
maximum one object instance.

Template data
types

Typically, references are defined as collection data types.
Since ODABA does not distinguish between array, list, set
and bag, collection references are usually defined a
dimension value, but any of the collection types could be
used as well.

Declarators The reference type definition is followed by one or more
reference declarators. Reference declarators allow
defining one or more reference names (identifier)
appended by several qualifiers.

 identifier [col_dimension] [assigned_value] [constraint]
 [order_keys]

Dimension Multiple references can be defined (for compatibility
reasons) in different ways. OSI supports the explicit
definition of a maximum number of object instances in a
reference collection.

Default: 1

REFERENCE Address location[3];

For allowing an unlimited number of referenced object
instances, you may define 0 or an empty dimension value
as dimension or use one of the standard collection types.

REFERENCE Address location[0];
REFERENCE Address location[];
REFERENCE SET<Address> location;
REFERENCE LIST<Address> location;
REFERENCE BAG<Address> location;

The difference between SET, LIST and BAG is the sort
order and unique property. Since ODABA provides
separate features for defining one or more sort orders for
a collection in an index definition, the four examples above
are equivalent, More detailed definition for different sort
orders, unique instances or keys etc. can be better
defined in a number of collection options. Nevertheless,
you may use the standard collection types SET, LIST and
BAG for defining your collections. Using LIST, SET or BAG,
you cannot define a dimension value.

Initial value The same way as for attributes, you may define an initial
value for a reference. This makes sense, however, only
for transient references, which can be initialized this way
when reading or creating a new instance.

The initial value for a reference is an expression
(operand), which must be valid in the context of the class,
i.e. it may refer to class members and global variables.

Constraint Constraints allow defining rules for validity checks on the
reference. The constraint is a collection constraint, i.e. it
operates on the whole collection and not on a single
instance. Thus, constraints cannot be used for controlling
deletion or insertion of instances. This is handles by
reacting on corresponding system events.

The constraint for a reference is an expression (operand),
which must be valid in the context of the class, i.e. it may
refer to class members and global variables.

Order keys A reference allows defining one or more order keys. How
to define keys and order keys is described in “Keys and
key references”.

5.9.5 Relationships

Relationships describe links to related object instances.
Relationships are special references and inherit all options
and attributes described for the reference. Relationships
can be defined in interfaces (limited specification) and in
classes.

The general definition for an relationship is:
[type_ref_options(*)] domain_type
 [rel_option(*)] rel_declarator(s)

Relationship can define single or multiple references to
instances of complex data type. Relationships cannot refer
to literal data types (base types or enumerated types).

Type options The options (type_ref_options), which can be defined for a
relationship, are the same as for references (see
“Relationships – Type options”)

Collection options In addition to the collection options defined for references
(see “References – Collection options”), several additional
collection options can be defined for relationships. These
collection options make sense only for relationships in
persistent data types (class definitions).

OWNER A relationship can be defined as the owner of the
instances referring to. When removing an instance from a
owning collection, the instance will be automatically
deleted.

Not owning relationships should always have a superset
(BASED_ON qualifier).

In an ODABA database, each instance belongs to exactly
one owning collection.

RELATIONSHIP SET<Car> OWNER cars ORDERED_BY (ik_cid UNIQUE)
 INVERSE company;

Here, the relationship cars (in Company) is the owner of
the car instances in the collection, i.e. removing a car from
the collection will delete the car instance.

NO_CREATE This option prevents instances from being created in a
collection. When the option is set, only existing instances
can be added to the collection. The option usually requires
a superset (BASED_ON qualifier)

This option should never be set for owning relationships,
because one cannot create instances at all in this case.

RELATIONSHIP Car NO_CREATE used_cars[2]
 BASED_ON company.cars
 ORDERED_BY (ik_cid UNIQUE)
 INVERSE users;

A person can use up to two cars from the company cars
collection. When not defining NO_CREATE, associating a
car with the person that does not exist yet in the
companies car set, a new car would automatically created
and added to the companies car set as well as to the used
cars for the person. When defining NO_CREATE, no car
instance is created in this case and associating a car to
the person will be denied.

DEPENDENT Instances may depend on a relationship without being
owned by the collection. Being dependent causes deletion
of instances removed from the collection (relationship).
Thus, dependent has a similar effect as the OWNER option.
DEPENDENT need not to be defined, when the relationship
owns the instances (OWNER).

RELATIONSHIP SET<Car> DEPENDENT cars
 BASED_ON Cars
 ORDERED_BY (ik_cid UNIQUE)
 INVERSE company;

Instead of defining cars as owned by the company, one
may define the company cars as based on the Cars extent
to create a collection containing all cars. In this case, the
DEPENDENT option can be used to delete car instances,
which are removed from a company’s cars collection.

SECONDARY When defining relationships with an inverse reference,
deep copy functions may end up in an infinite recursion
loop. The SECONDARY option indicates that instances for
the relationship are not to be copied.

When defining a relationship pair, exactly one of the
relationships should be marked as SECONDARY.

RELATIONSHIP Person children[0]
 BASED_ON Persons
 ORDERED_BY (sk_name UNIQUE)
 INVERSE parents;
RELATIONSHIP Person SECONDARY parents[2]
 BASED_ON Persons
 ORDERED_BY (sk_name UNIQUE)
 INVERSE children;

In this example, children are copied and parents are
maintained automatically.

SHARED Shared collections are collections, which can be shared
between different transactions. This requires specific key
locking strategies to avoid assigning duplicate keys to
unique indexes. Since this causes loss of performance,
this option should be set, when necessary, only.

RELATIONSHIP CAR SHARED location[3];

Data types As domain type or data type for relationships, only class or
interface types are allowed. Structure types, view types or
enumerated data types cannot be used in as type for
instances in a relationship.

Declarators The relation type definition is followed by one or more
relation declarators (rel_declarators). Relation
declarators allow defining one or more relation names
(identifier) appended by several qualifiers. All reference
qualifiers can apply on relationship definitions as well.
Reference qualifiers are described in the Reference topic,
except order keys, which are described below.

 identifier [col_dimension] [constraint]
 [base_collection] [inverse_spec] [order_keys]

Constraint Constraints allow defining rules for validity checks on the
relationship. The constraint is a collection constraint, i.e. it
operates on the whole collection and not on a single
instance. Thus, constraints cannot be used for controlling
deletion or insertion of instances. This is handles by
reacting on corresponding system events.

The constraint for a reference is an expression (operand),
which must be valid in the context of the class, i.e. it may
refer to class members and global variables.

base collection BASED_ON qualifier allows defining a superset (base
collection) for the collection. For singular relationships, the
superset defines a value domain for the instances
referenced. For multiple relationships, the superset
contains all the instances, which can be associated with
the relationship.

Usually, each primary relationship (not marked as
SECONDARY), which does not own its instances (OWNER
option not defined), should have a base collection
definition to define, who is the owner of the instances in
the relationship.

When defining a base collection, an order key is required
that is also order key in the referenced base collection
(superset).

Typically, extents are defined as base collections.
RELATIONSHIP Person children[0]
 BASED_ON Persons
 ORDERED_BY (sk_name UNIQUE)
 INVERSE parents;

Here, children of a Person belong to the Persons extent,
i.e. each person referenced in the children relationship is
member of the Person extent as well, which owns the
Person instances.

In some cases, it makes sense defining a related local
collection (relationship) as superset.

RELATIONSHIP Car NO_CREATE used_cars[2]
 BASED_ON company.cars
 ORDERED_BY (ik_cid UNIQUE)
 INVERSE users;

In this case, the cars used by a Person belong to the cars
collection of the company, the person works for. This
means, different persons may have different base
collections depending on the company associated with the
person. When the person changes the company, it
automatically looses all assigned cars, which belong to the
previous company.

Defining a relative base collection as access path
consisting of a number of relationships (traversal path),
the following conditions must be fulfilled:

a) each relationship in the path must have an inverse
reference

b) Each relationship in the path except the last one
must be singular

For weak-typed relationships, one may define ‘*’ as base
collection (BASED_ON *). In this case, the base collection
depends on the type set for the relationship, i.e. the
default extent for the selected type is used as base
collection. The default extent is the extent with the same
name as the referenced class (data type).

To maintain the superset relation properly, ODABA
automatically adds instances to the base collection, which
are created for the relationship and do not exist in the
base collection. This can be avoided by setting the
NO_CREATE option, in which case creation of new
instances is denied for the relationship.

Inverse
Relationship

The INVERSE qualifier defines the inverse relationship for
the current relationship. The inverse relationship must be
a relationship property defined in the referenced type or
one of its base types.

Relationships (except owning relationships) should define
an inverse relationship (this is not a question of database
consistency, but a question of good design). Relationships
without inverse reference will cause problems when being
referenced in property paths for relative base collections.

RELATIONSHIP Person children[0]
 BASED_ON Persons
 ORDERED_BY (sk_name UNIQUE)
 INVERSE parents;

According to ODMG suggestions [1], one may use scoped
names for the inverse definition, but this is redundant and
not required in OSI/ODL.

RELATIONSHIP Person children[0]
 BASED_ON Persons
 ORDERED_BY (sk_name UNIQUE)
 INVERSE Person::parents;

Order keys A relationship allows defining one or more order keys.
How to define keys and order keys is described in “Keys
and key references”.

RELATIONSHIP Car NO_CREATE used_cars[2]
 BASED_ON company.cars
 ORDERED_BY (ik_cid UNIQUE)
 INVERSE users;

In this case, the cars used by a Person belong to the cars
collection of the company, the person works for. This
means, different persons may have different base
collections depending on the company associated with the
person. When the person changes the company, it
automatically looses all assigned cars, which belong to the
previous company.

5.9.6 Keys and Key References

Keys are considered as structure or class members in
OSI/ODABA. A key defines a structure consisting of one
or more attributes, which are defined in the complex data
type (class or view) the key belongs to.

Each class or view definition may contain any number of
key members. Keys are the pre-requisite for defining
collection indexes for extents, references or relationships
in the database, but also for maintaining set relations.

 CLASS Person
 (
 KEY {

 IDENT_KEY ik_pid(pid);
 sk_Name (name,first_name);

 };
 …
)

Key definitions Key definitions are preceded by the KEY keyword. You
may use the KEY keyword for each key definition or define
a number of keys in a KEY block.

IDENT_KEY One of the keys can be marked as identifying key, which
usually determines the default order when accessing data
in a collection. The identifying key is marked by the
IDENT_KEY option.

Defining extents for a class or view requires an identifying
key, always. Identifying keys are also used for maintaining
set relations.

Key
components

Key components or key attributes are the member of the
key structure. A key may have any number of key
components, but the maximum length for a key is limited
to 512 bytes.

Key components must be defined as attributes in the class
or view the key belongs to.

Array
components

When defining a key on an array attribute, as many keys
as array elements exist are created for each instance.
This allows accessing an instance by more than one key.

A key definition may contain only one array component.
When containing an array component, the key must not
contain a generic key component.

Generic key
components

One key component in a key definition may refer to a
generic attribute. Defining generic key components differs
from array keys, because for each type of the generic
attribute a separate index will be created when the key is
referenced in an index definition.

This allows e.g. defining language dependent indexes in
case of having language depending attributes (generic
attributes), where the language defines the generic type of
the attribute.

When a key contains a generic key component, it must not
contain an array component.

Identity key A special key is the __IDENTITY key, which refers to the
implicitly defined __IDENTITY attribute, which exists for
each persistent data type. The __IDENTITY key must get
the name __IDENTITY and does not have key
components.

 CLASS Person
 (
 KEY __IDENTITY;
 …
)

You may also define the __IDENTITY key as identifying
key, which makes sense, when there is no identifying set
of attributes available in the class definition. Identity keys
cannot be defined for views.

Component
options

Key components can be extended by several options,
which determine the way of comparing keys.

IGNORE_CASE – The option indicates, that comparing
keys the difference between upper and lower case
letters for text components will be ignored.

 CLASS Person
 (
 KEY sk_Name (IGNORE_CASE DESCENDING name,first_name);
 …
)

DESCENDING – The option indicates, that the key
components are ordered in descending order when
being referenced in an index definition. Descending
order applies only on key components, which have
been marked as such. Other key components are
stored in ascending order in the index.

Even though it seems, that key component options are
index attributes rather than key attributes, since those
influence the sort order in the index, it has been decided
to define them as component attributes. This has the
advantage, that those options can be defined separately
for each key component.

Key references You may refer to keys in the application by referring to the
key name and one of its component names.

 SET<Person> &persons = Persons;
 …
 persons.get(‘ID0033’).
 persons.sk_name.name

When comparing key components, the IGNORE_CASE
option is in affect, which is not the case, when accessing
the key component attribute (name) directly, instead.

ORDERED_BY Typically, keys are referenced in index definitions for
collections (extents, references or relationships). Indexes
are used for defining persistent or temporary sort orders
for a collection.

Indexes are defined by using the ORDER BY option.
 CLASS Person
 (
 KEY {

 IDENT_KEY ik_pid(pid);
 sk_Name (name,first_name);

 };
 EXTENT Persons MULTIPLE_KEY OWNER

 ORDERED_BY (ik_pid UNIQUE SUPRESS_EMPTY, sk_Name);
)

For each collection any number of indexes can be defined
after the ORDERED_BY keyword. Indexes are defined by
referring to the key name as defined in the view or extent
definition the extent, reference or relationship is based on.
Index definitions must be enclosed in parenthesis and
separated by comma. Eck key reference in an index
definition can be preceded by a number of options:

UNIQUE – The option indicates that key values in the
index are unique. An attempt to add the same key
value twice into the index will result in an error.

SUPRESS_EMPTY – This option excludes empty key
values from the index, i.e. when adding an instance to
a collection, it will not added to the index, when all key
components contain empty values. This option should
never be set for identifying keys.

TEMPORARY – A temporary index is created at runtime and
is not stored to the database. Temporary indexes
should not be defined for the identifying key.

The current OSI version allows defining one index per key
for a collection, i.e. you cannot define several indexes for
the same key with different index option for one collection.

6 Variables

Variables are symbols in an OSI function, which represent values
when executing the function. Depending on the context, in which a
variable has been defined, OSI distinguishes between:

 Member variables
Member variables (properties) are defined in the context of
complex data type definitions. This is explained in detail in
chapter “Data types”. Member variables can be of any of the
variable types listed in the variable type hierarchy below
(attribute, reference, relationship, inheritance, key). In some
cases, also methods are considered as member variables.

 Parameter variables
Parameters are variables that are passed to other methods
(functions). Parameters are declared in the function header.
Details about parameter definitions are described in chapter
“Function Parameters”.

 Local variable
Local variables are member definitions in the variable section
of an OSI function. Local variables are valid in the context of a
function and can be inherited to local sub-functions. Details
about how to define local variables are described in chapter
“Variables Section”.

 Global variable
Global variables are member definitions, which are defined
outside an OSI function or which are preceded by the GLOBAL
keyword. Details about how to define global variables are
described in chapter “Global variables”.

 Database variables
Database variables are variables defined in the database.
Usually, database variables are global database and view
extents defined in the dictionary. Details about using database
variables are described in chapter “Database variables”. Also
enumerations are sometimes considered as database
variables.

 Options (system variables)
Options or system variables are variables, which can be set in
an option file or in the application. Options are thread-global,
i.e. the same option may have different values in different
threads.

 Self variable
The self variable (self) refers to the object instance or
collection that was calling the function.

 Extension variable
Extension variables are based on extension property
definitions and may be referenced for any extendable data
type. Extendable data types are data types that inherit from
__OBJECT or that contain a reference property
__EXTENSIONS. Extension variables are potentially available
for each extendable data type, regardless whether those have
been assigned to the object instance or not.

Variables behave in the same way in general, but they differ in the
way they are defined.

Variable
type
hierarchy

Besides simple member variables, variables can be defined as
more specific variables as shown in the subsequent variable type
hierarchy::

 Variable
 Attribute
 Reference

 Relationship
 Inheritance/extension

 Key

Attributes, references and keys ARE specific variables that can be
defined in the context of a complex data type (class, view,
interface). Relationships are specific references and inheritance or
extends specifications are specific relationships.

OSI specific is the fact, that inheritance/extends (base classes)
are considered as variables and can be accessed as such, since
a variable name can be assigned to each inheritance or extends
specification.

Variable
operation
s

A number of operations can be used in connection with variables.
Variable operations and their semantics are described in chapter
“Built-in operations”.

Besides built-in operations, OSI provides more than 200 access
functions for variables. Most of them apply to persistent variables,
for which data is stored in the database. Access functions for
variables are described in chapter “Built-in class functions”.

Cursor
functio
n

Variable semantics in OSI differ from traditional programming
languages, since OSI variables have got cursor functionality, i.e.
an OSI variable is considered as collection of instances of a given
type (variable type). One instance can be selected for a variable,
which is considered as the current value of the variable.

Variables, which do not really represent a collection, because their
dimension is 1, i.e. they contain exactly one instance, are
considered as collections with one instance.

The cursor function allows selecting one instance as current
variable instance. Many operations operate on the current
instance rather than on the whole collection. There are, however,
functions, which operate on the collection as copyCollection
or lockCollection.

Selecti
ng an
instanc
e

Selecting an instance for a variable is usually done by the selector
operator (), which is nearly equivalent to the get function call.

Using selector operators will reset filter conditions which might
have been set before or inherited from the variable origin.

 person(0); // select first person instance
 person.get(0); // same as above
 person(‘ID0033’); // select person with pid ID0033
 person.get(‘ID0033’); // same as above

Selecting an instance for a variable is possible by position or by
key, when the variable represents an ordered collection. When the
order key has more than one component, component values are
separated by |.

 person(‘Miller|Paul’);

The difference between using the get function and the selector
operator is, that calling the get function will change the selection
in the person variable, while the selector does not.

 person(‘ID0033’);
 Message(person.name); // no person selected,
 // NULL value exception
 person.get(‘ID0033’); // selects an instance in person
 Message(person.name); // prints: Miller

After selecting an instance in the variable of complex data type,
you can access member variables of the selected object instance
or perform instance operations.

 person(‘ID0033’); // select person with pid ID0033
 person.name = ‘Miller’;// assign a name to the selected person
// or in one statement:
 person(‘ID0033’).name = ‘Miller’;

When defining simple application variables as in the example
below, selecting an instance is not necessary, but would also not
cause an error, because the cursor functionality is supported for
any type of variable.

 string name = ‘Miller|Paul’;
 person(name);

Instead of a constant value, one may also pass a variable or
expression as locator. The variable or expression will be
evaluated in the scope of the function defining the path. When
passing an expression, the expression is evaluated and the result
is passed as locator to the collection.

STRING app_name;
 …
 app_name = 'Sample'; // same as: app_name(0) = 'Sample';

Applying instance operations on variables, which do not have a
selected instance will cause an exception.

Built-in
operati
ons

Local variables support built-in operations and built-in class
functions as described in the corresponding chapters. Moreover,
local variables support functions defined for the data type of the
local variable.

Class
method
s

When the data type is a complex data type (class) defined by the
application, any number of methods can be defined for the data
type, which can be called with the local variable. Moreover,
interface functions can be called for complex data type variables,
which provide an OSI function interface.

Transient
and
persisten
t
variables

Depending on the way, variable values are stored, variables can
be divided into two groups:

 Transient variables
Transient variables are variables, for which values are stored
in memory and which are available during the life time of a
process, only.

 Persistent variables
Persistent variables are variables, for which values are stored
in the database and which survive the process.

Within OSI transient and persistent variables are handled in the
same way, i.e. they do not differ in the way they operate. The
main difference is that values for persistent variables are red from
the database and stored automatically after being modified. Thus,
programming with persistent variables is completely the same as
programming with transient variables.

Transie
nt
variabl
es

Transient variables are available during the life time of a process.
The lifetime of a variable in a process depends on the type of
variable definition.

Global variables are accessible until the end of the process. Local
variables and parameter variables are accessible as long as the
function runs. The accessibility of member variables depends on
the type of variable the member variable belongs to.

Persist
ent
variabl
es

Persistent variables are variables, that are usually stored in the
database and thus, survive the process, that has created or
updated those variables.

Referring to persistent variables requires database access. Since
database access may fail for different reasons (access rights, no
instance available, etc.), referring to persistent variables may
cause an exception. Exceptions are always fired, when accessing
persistent variables fails. Exceptions fired can be handled in the
same function or in any other function in the calling hierarchy.

Updating persistent variables will cause updating the database.
This is done automatically, when another instance is selected for
a variable and does not require additional actions. The time point,
however, when updated data is really stored to the database, can
be controlled by the application calling the save function explicitly.

Persistent variables are usually member of complex data types.
Persistent variables are stored, when the instance, they are part
of is stored to the database. This is done automatically, when
another instance is selected for the variable, or when the explicit
save function is called.

6.1 Database Variables

Database variables are variables, which are part of the
database definition and which are stored in the database.
Typically, all extents defined in the dictionary are database
variables.

Since database extents are the entry point for accessing
the database, one has to define an extent also for defining
a single database variable.

Instead of persistent extents, view extents can be referred
to as database variables as well. Vie definitions (view
type) are not database variables but can be referred to as
method.

Database
extents

Since database variables are part of the database, they
have been declared as extent definitions when defining
the class that defines the instance structure for the
database. Hence, database variables need not to be
declared, when being accessed in an OSI function.

 Persons(‘ID0033’).name = ‘Miller’;

The example above just refers to the database variable
Persons defined as extent in the database dictionary.

Database variables exist only in the context of an access
path (Persons(‘ID0033’).name). Several references
to the same database variable in different access paths
are considered as different variables, i.e. they will not
have the same cursor position.

 Persons(‘ID0033’); // select instance
 Persons.name = ‘Miller’; // other variable, exception

In the example above, the database variable in the second
line is different from the database variable in the first line,
even though they refer to the same collection (extent).
Since the database variable in the second line is not
positioned (no instance selected), the second statement
will terminate with an exception.

To handle such situations, database variables should be
assigned to local or global variables:

 Person &pers_coll[] = Persons; // assign DB variable
 …
 pers_coll(‘ID0033’);
 pers_coll.name = ‘Miller’;

After assigning the database variable Persons to the
local pers_coll variable, the function performs well,
since the local variable pers_coll is positioned in line
three of the example, and the same positioned variable is
used in line four for assigning the name.

View Extent Besides database extent definitions you may define view
extents in the database dictionary. A view extent is an
application of a view type to one or more data collections.

View extents are considered as database variables as well
and can be referenced in OSI functions.

As well as database extent variables, view extent
variables are defined in the scope of an access path.
Depending on the way of referring to view variables, view
extents are created at once (offline view) or view
instances are provided on demand (online view).

 Employment &pers_comp[] = Employments; // online view
 Employment pers_comp[] = Employments; // offline view

Assigning a transient view extent by reference creates an
online view, i.e. view instances are displayed with the
state they have got when the view instance was
requested. When assigning the transient view extent by
value or when assigning a persistent view extent, the
extent will be created when not yet existing and the extent
variable is assigned to the local variable like a database
extent variable.

Offline views Creating an offline view for a transient view extent causes
ODABA to create a temporary extent in a temporary
database area. Temporary extents can be accessed as
long as the process is running.

Creating a new cursor for an offline view can be done by
assigning the view variable:

 Employment pers_comp[] = Employments; // offline view
 Employment copy[] = pers_comp; // offline view copy

In this case, the view is not re-created, but a new cursor is
created for the temporary view extent.

6.2 Global Variables

Global variables are variables, which can be accessed in
any scope of the application. Global variables are
transient variables and available within a process, only.
Global variables can be defined in function definitions and
outside any scope, but not within class or view definitions.

Variables defined in an OSI script file outside any class,
view or function scope, are global variables by default.

// global variables
STRING application_name = 'Sample';
FileHandle docFile;

It is suggested to define global variables outside any
scope, but it is not necessary. You may also define global
variables within an OSI function:

BOOL OpenFile()
{
VARIABLES
 GLOBAL FileHandle docFile;
 STRING filename = ‘c:/ODABA/Sample/Sample.txt’;
 BOOL cond = TRUE;
PROCESS
 if (docFile.IsOpened())
 Message(‘Warning: File aleady opened – reopened’);
 if (cond = docFile.Open(filename))
 Message(‘Error : File ‘+filename+‘could not be opened’);
FINAL
 return(cond);
};

Global variables are created when being defined the first
time. Redefinitions for global variables are ignored and do
not cause an error. Thus, redefining a global variable with
different specification will be accepted but will not change
the variable specification.

When a global variable has already being defined, it
needs not to be redefined in the functions, which refer to
the global variable. When defining a local variable in a
function with the same name as a global variable, the local
variable will overwrite the global variable in the function.

Global variables can be base type variables as well
variables with complex data type.

6.3 Self variable and execute operator

Self (self) is a variable, which is available in any non-
static function. Self refers to the object instance or
collection, which was calling the function.

Self represents exactly the current state of the calling
object. Thus, changing the selection in a collection object
are reflected in the self variable.

Usage Usually, the self variable is not necessary, since object or
built-in methods can be called directly and need not to be
prefixed by the self operator. When, however, variables
have been defined with the same name as e.g. built-in
functions, the self variable allows to distinguish between
variable reference and function call.

COLLECTION STRING Person::ChildrenList()
{
VARIABLES
 Bool first = true;
 STRING childrenList;
PROCESS
 If (self.first) { // selects first instance in collection
 while (located) { // same as self->located
 childrenList += name;
 if (!first) // refers to local variable
 childrenList += ‘,’;
 first = false;
 next;
 }
FINAL
 return(childrenList);
};

The example above could be written a little bit simpler, but
it shows the different ways of referring to first as function
and as variable. .

6.4 Lookup priorities

When referring to a variable in an OSI function, variables
or symbols (names) are searched in the following order:

Local scope
- Local variables
- Parameter variables
- Member variables

 Class properties
 Meta-attributes
 Namespace database variables

 Local extents
 Local enumerations

 Property extensions
 Methods

 Actions
 OSI functions
 CPP functions

 Base type variables (local scope)
- Built-in functions (odaba/odabagui interface)

Global scope
- Global variables
- Database variables

 Global enumerations
 Global extents

- Global OSI functions
- OSI Constructor functions
- System functions

When the current class is defined in a namespace
hierarchy, extents and enumerations defined in upper
namespaces can be accessed.

When variables are ambiguous, the scope operator can
be used to refer to lower priority variables.

// Message is defined as database extent
// to output a system message requires now:
 SystemClass::Message(‘Hello …’);

// When a function locate has been implemented in the Person
// class, the property handle function locate can be called as:
 person.Property::locate(…);

Execute operator Since local variables, parameters and class members are
resolved prior to methods, problems occur when thos
variables have got the same name as built-in or class
interface functions. In order to distinguish between
variables and methods, the execute operator (->) can be
used..

 … Person::fragment()
{
 Message(children(0).first); // first attribute for first child
 Message(children->first.first); // same as above
};

The execute operator (->) always requires a method.
Thus, using the execute operator allows referring to a
function, also, when a variable with the same name is
available.

7 Functions

OSI functions are based on a syntax similar to Java. OSI
supports three types of functions:

 Global functions
Global functions are defined outside of any class
definition and do not belong to a class. Thus, global
functions behave like static functions.

 Class functions
Class functions are defined in the scope of a class or
must have a scope operator, which defines the class
the function belongs to. Class functions can be
defined as static, instance or collection functions.

 Inline functions
Inline functions are functions, which are defined in
another function. Inline functions are considered as
class functions of the class of the calling object. Inline
functions do not have parameters, i.e. you cannot
pass parameter values to inline functions. Instead,
inline functions may refer to variables defined in the
calling function.

All functions may contain different sections for defining
variables, function code, error handling and final
processing.

General format OSI functions have got a standard format, which is
independent on the function type.

[function header]
{
[VARIABLES
 Variable definitions]
[PROCESS]
 statements
[ON_ERROR
 statements]
[FINAL
 statements]
};

Function header The function header defines the type of the function and
the parameters. The function header must be defined for
global and class functions. It must not be defined for inline
functions.

Variable section The variable section contains definitions for local
variables, i.e. variables, which are defined in the scope of
the function. The section must be preceded by the
VARIABLE keyword, which is not necessary, when no
local variables are defined for the function.

Process section The process section contains the statements for the
function. The PROCESS keyword can be omitted, when no
variables are defined for the function.

Error section The error section is a block of statements, which is
executed in case of an error or exception. It must start
with the ON_ERROR keyword, when being defined. It can
be omitted, when no specific error handling is required.

Final section The final section is executed, when leaving the process or
error section (leave) or when an error has been signaled
(error). It is not called in case of an unhandled
exception. Exceptions are passed to the next ON_ERROR
block in the calling hierarchy.

7.1 Function Header

The function header defines the type of the function and
the parameters.

[FUNCTION] [options] type expr_name([parameters])

The function header may start with the FUNCTION
keyword to distinguish between functions and other
method types (e.g. C++ or JAVA). When running OSI, OSI
functions are the only methods that can be defined. In this
case, the FUNCTION keyword can be omitted. It must be
defined, however, when running the LoadSchema utility,
which supports different types of function definitions.

7.1.1 Function Options

Options are provided for defining the function type, access
privileges and other function properties

Function types As in other object-oriented languages, most OSI functions
require a calling object, which is the base for executing the
function. You may also define STATIC functions, which do
not require any calling object.

In addition, you may also define functions, with a
collection as calling object. The difference must be defined
in for the function, since variables represent collections as
well as instances. Thus, it makes a difference, whether a
function is called for the instance selected for the variable
or for the collection represented by the variable.

Several options are provided for defining different types of
calling object for the function. There are three ways, a
function can work:

 Calling object is a collection
 Calling object is an instance (default)
 No calling object required

STATIC – indicates, that no object instance or collection is
required for executing the function.

Static function Static functions are functions that do not require a calling
object. Static functions can be called from global functions
or functions belonging to other classes by using the scope
operator. Within static functions, member variables
defined for the complex data type (e.g. class) the function
belongs to are not available. Static functions must be
marked as such, when being defined as method of
complex data types.

STATIC INT Person::Count()
{
 return (Persons.count);
};

All functions not defined as method for a complex data
type are static functions by default. Functions defined as
methods for a complex data type must explicitly be
declared as static using the STATIC keyword.

In the context of a class method, static functions of the
same class can be called without any prefix.

STATIC INT Person::Example()
{
VARIABLES
 INT count = Count; // calls Person::Count
 …
};

Outside the scope of the complex data type defining the
static function it can be called by using scoped names or
passing a calling object:

 count = Person::Count; // scoped name
 count = Persons.Count; // passing calling object

Passing a calling object, the calling object is used only for
determining the complex data type the method belongs to.
No data from the calling object is accessible in the static
method.

Collection
function

Collection functions operate on the collection rather than
on a single (selected) instance. Hence, collection
functions do not require a selected instance.

Defining a collection function requires the COLLECTION
keyword in the function header:

COLLECTION BOOL Person::Count()
{
 return count;
}

You may call a collection function with a single instance or
a collection without any problem, since a single instance is
considered as collection with one instance in this case.

Persons.Count; // returns the number of persons
Persons(‘P2-10’).Count; // returns 1 when person P2-10 exists

Since the result of Persons(‘P2-10’) is an instance
and thus, the Count function returns 1 in this case.

When applying collection functions on a collection with a
selected instance, the function may change the selection.
On the other hand, the called function may use this
information. When passing a selected Persons
collection to the collection function Print, the function
might print all the persons beginning with the selected
instance.

Instance
function

Calling an instance function requires a variable with a
selected instance. Variables containing a single instance,
only, will automatically select the only instance if not yet
done.

Instance is the default. There is no keyword for instance
and instance is assumed when neither STATIC nor
COLLECTION have been defined.

Persons(‘P2-10’).Print; // calls print for person P2-10
Persons().Print; // calls print for each persons

The first example selects a person in the Persons
collection before calling Print. The second example
iterates through the collection and calls Print for each
person in the extent.

A call of Persons.Print, however, will work properly
only, when a person has been selected in the Persons
extent before.

Instance functions may change member variables of the
selected instance for the variable passed as calling object
to the function, but they cannot change the selection in the
calling object.

Virtual function Inheritance is used similar to other object-oriented
environments. Functions defined in base classes, are
inherited from the specialized classes.

A virtual function in a specialized class may overload a
function defined in a base class (generalization).

When defining a virtual function, OSI checks at run-time,
whether there is an overloaded function in the specialized
class, which applies to the currently selected instance.

In case of weak-typed collections, OSI supports dynamic
binding for functions that are defined as virtual in the base
class of the collection. Thus, specialized instances will run
specialized functions.

Considering a Persons collection, which contains
different specialized instances for persons like Student,
Retired, and Employee, one may implement a virtual
Print function in the Person class.

VIRTUAL BOOL Person::Print()
…

Re-implementing the Print function for Student,
Retired, and Employee will print each person
instance according to the Print function implemented in
the specialized class when calling Persons().Print.

VIRTUAL does not make sense for collection functions.
You may define it, but it will not have any effect, since OSI
does support class inheritance, but not collection
inheritance.

Access privileges Functions can be defined with different access privileges:

PUBLIC – Function can be called from anywhere

PROTECTED – Function can be called from other class
functions, when the calling class inherits from the class
that implements the function.

PRIVATE – Functions can be called with calling objects of
class only, which implemented the function.

OSI allows defining access privileges, but this feature is
not yet supported, i.e. the definition will not have any
impact to the execution of a function. The option should,
however, be used with care since it is planned to support
access privileges in future OSI versions,

One way ONEWAY - indicates, that the function does not change the
calling object. This option has been added for compatibility
with ODMG suggestions, but has no effect in OSI for
ODABA 9.

7.1.2 Type of Returned Value

The type defines the type of the return value. The return
value can be any of the supported types, i.e. an
elementary type (CHAR, BOOL etc.), a complex data type
(Person, Car), a template type (ARRAY<Person>) or
any other data type.

Return values might be passed directly or by reference.
Returning an instance by reference returns a “pointer” to
the returned instances, i.e. updating the returned value
has an impact on the “original” instance as well.

COLLECTION &Person Person::FindTop()
 …

When a reference to an instance in a collection is
returned, the instance can be accessed, but the selection
in the collection cannot be changed. On the other hand,
changing the selection in the original will change the
instance in the reference as well.

You may also pass collections by reference. In this case,
the returned (referenced) collection and its original using
the same cursor (i.e. referring to the same selected
instance), and the selection can be changed in the
reference and in the original collection.

7.1.3 Function Parameters

Parameters are variables, which are passed to a function
when calling it for execution. Parameter variables are
defined in function header. When calling a function, values
are assigned to parameter variables and passed to the
called function.

BOOL Person::CreatePersons(INT number)
{
 …
};

bool main()
{
 if (Persons.CreatePersons(10))
 …
}

Parameter values are automatically converted when
required (see “Data conversion”). The type of assignment
(by value or by reference) when assigning operands to
parameters depends on the type of parameter definition.
Parameters defined as reference variables are assigned
by reference. Parameters defined as value variables are
assigned as value variables.

Parameter
declaration

Parameters are declared in the function header. OSI does
not support function declarations as in C++. The only
place declaring parameter variables is the function
definition.

type_spec expr_name([params_decl])

Each parameter in the parameter declaration list
(params_decl) is defined as:

[param_attribute] simple_type_spec declarator

In contrast to local variables, parameter declarations allow
only one declarator per parameter. Parameter
declarations are separated by comma.

Default value Each parameter variable may get a default (initial) value.
As initial values constants can be defined, but also
operands, which are valid in the context of the defined
function. Operands may refer to global and database
variables, to member variables, when the function is an
instance function, but not to local variables defined in the
function or to other parameter variables.

The initial value is determined for missing parameters
when calling the function based on the calling object
instance.

When the function is a collection function, initial parameter
expressions should refer to constant values or global or
database variables, only.

Default values can be assigned to parameters by defining
an initial value in the parameter declaration:

BOOL Person::CreatePersons(INT number = 10)

Initial values are assigned to the parameter, when no
operand is passed to the parameter declared in the
function header when calling the function.

In and out
parameters

According to ODMG suggestions, parameter can be
declared as IN, OUT or INOUT parameters
(param_attribute). This option does not have an
impact in OSI functions, since only parameters declared
reference variables may function as OUT or INOUT
parameters. OSI does not check, whether the variable
type (by value or by reference) is consistent with the in/out
specification for the parameter.

7.2 Function Body

The function body consists of different sections, which are
optional, except the PROCESS section. The function body
is enclosed in { … }.

{
 [VARIABLES
 Variable definitions]
 [PROCESS]
 statements
 [ON_ERROR
 statements]
 [FINAL
 statements]
};

 Variable section
The variable section contains definitions for local
variables, i.e. variables, which are defined in the
scope of the function. The section must be preceded
by the VARIABLE keyword, which is not necessary,
when no local variables are defined for the function.

 Process section
The process section contains the statements for the
function. The PROCESS keyword can be omitted, when
no variables are defined for the function.

 Error section
The error section is a block of statements, which is
executed in case of an error or exception. It must start
with the ON_ERROR keyword, when being defined. It
can be omitted, when no specific error handling is
required.

 Final section
The final section is executed, when leaving the
process or error section (leave) or when an error has
been signaled (error). It is not called in case of an
unhandled exception. Exceptions are passed to the
next ON_ERROR block in the calling hierarchy.

Each section except the VARIABLES section consists of a
sequence of statements. OSI does not support labels and
GOTO instructions, but these sections help to control the
process flow and error handling.

7.2.1 Variable Definitions

Local variables are variables, which are defined in the
scope of a function. OSI functions do have a separate
section for defining variables. Variables can be defined
only in the variable section.

bool main(STRING applname='Test')
{
VARIABLES
 GLOBAL STRING application_name;
 STRING(40) applname;
 BOOL cond = true;
PROCESS
 …
}

The end of the variable section is indicated by the
PROCESS section label.

The variable section may contain global and local variable
definitions. The definition of global variables is described
in detail in chapter “global Variables”. Here, the definition
of local variables is described.

Variable
definition

Local variables are always defined as member variables,
i.e. you cannot define a relationship or reference as local
variable.

 domain_type declarators ';'

Each variable definition consists of a type specification
and one or more declarators. OSI does not support local
definitions for complex data types of enumerations, i.e. all
types referenced in local variable definitions must be
defined in the dictionary or as explicit data type definitions
in the script file. Details for defining member variables are
described in chapter “Members”.

Local variables can be initialized by assigning a value to
the variable.

 INT(10) count = parm1;
 INT(10) double_count = count*2;

Operands assigned to the variable may refer to parameter
variables, to global, database and member variables and
to local variables defined before.

Variables can be defined as value or reference variables
and initial values can be assigned to variables by
reference or by value. Details for variable assignments are
described in topic “Built-in Operations/Assignment
operations”.

Operation path
variables

An operation path variable allows assigning an operation
path (or view) to a variable. When assigning an operation
path as initialize value to a variable, the operation path is
executed immediately and the result is assigned to the
variable.

 SET<Person> grand_children =
 Persons().children().where(age < 18);

For property paths, the result is the last property
referenced in the path.

 SET<Person> grand_children = Persons().children;

In the example above, this is the children collection.
When assigning property paths, iteration operands will be
ignored. In order to refer to operation or property paths as
such, reference variables should be defined.

Reference
variables

Reference variables are defined by a preceding & in front
of the variable name. Reference variables can be
initialized by reference assignment, only. Regardless,
whether reference assignment is requested explicitly or
not, initializing reference variables always uses
assignment by reference.

 SET<Person> &grand_children &= Persons().children;
 SET<Person> &grand_children1 =
 Persons().children().where(age < 18);

When assigning an initial value to a reference variable, the
initialize expression (right hand operand) is opened as
access handle and assigned to the reference variable.
This allows iterating through the operation, which is
different from iterating through the result of an operation
as in case of non reference variables.

7.2.2 Processing

The processing section of a function contains the
statements for performing the function operation.
Processing sections might be rather complex but may also
refer just to a single statement.

Simple functions just contain the processing section need
not to introduce the processing section by the PROCESS
keyword.

INT Person::Count()
{
 return count;
};

Functions containing one or more variable definitions need
to introduce the processing section by the PROCESS
keyword, which follows the list of variable definitions.

BOOL PrintPersons()
{
VARIABLES
 GLOBAL FileHandle docFile;

PROCESS
 … processing statements
}

When calling a function, the processing section is entered
after initializing parameters (default values) and variables.
Several syntax operations allow altering and controlling
the process flow within the processing section (see also
chapter “Process Flow Operations”).

Processing is the PROCESS section is terminated, after
the last statement has been executed or when termination
is caused by a process flow operation.

7.2.3 Error handling

The ON_ERROR block supports error handling. OSI differs
between local and global errors.

BOOL Example()
{
 …
 if (…) error(99)
 …
ON_ERROR
 return FALSE;
FINAL
 return TRUE;
}

Local Errors Local errors are errors, which can be handled within a
function, only. Local errors are indicated by using the
error function (“Process Flow Operations”). The error
function causes a break in the processing and passed
control to the ON_ERROR block defined in the function.

When using the error function in a function, one should
always define an ON_ERROR section for handling the error.
When not defining an ON_ERROR section and calling the
error function in the function, processing continues with
the final block, when being defined, or leaves the function.

Exceptions Exceptions or global errors are errors, which are created by
OSI or explicitly by calling the exception process flow
function. An exception passes control the next ON_ERROR
block in the calling hierarchy. When no ON_ERROR block is
defined in the calling hierarchy, processing terminates
abnormally.

When reaching the ON_ERROR block, the
_LastException variable contains the exception reason.

BOOL Example()
{
 …
 Message(get(0).value(“name”));
 …
ON_ERROR
 Message(“error “ + (string) _LastException.errorCode +
 “: “ + _LastException.errorReason);
FINAL
}

The last can be checked referring to _LastException
properties provided by the odaba::Exception interface.

The default exception handling can be changed by using
the exceptions directive or setting the OSI exceptions
option to a valid exception handling mode before starting
the application.

BOOL Example()
{
 …
#exceptions accept;
 X = a + undefined;
#exceptionS;
 …
}

Changing the exception handling state will be in effect until
it is changed again or until leaving the function, that has
changed the exception handling. You may also restore the
previous settings by using the exceptions directive
without any parameter.

Handling types In the example above, the red line is supposed to through
an exception. When not using the exceptions directive,
the function terminates and tries to locate the next higher
ON_ERROR block. To avoid this, you may change the
exception handling as described below:

accept: When, setting exception handling to accept, the
line throwing the exception is executed by assuming NULL
values or the operand(s) causing the exception.

ignore: Setting exception handling to ignore, causes the
statement throwing the exception to be ignored. Processing
continues with the statement following.

exception: is the default setting, which causes the function
to continue with the nearest ON_ERROR block in the calling
hierarchy.

Restoring
previous value

 For restoring the exception handling state as it was before
changing it, you may call the exceptions directive
without any parameter.

exceptions
option

In order to change the default for exception handling when
running OSI functions, the OSI exceptions option or
environment variable might be set to one of the valid
values. Invalid settings will be ignored.

Null value
handling

Special exceptions are “null value exceptions”, which are
fired, when operating with variables containing no value.
Many operations require a selected value for a variable and
cannot work properly, when no value is selected for the
variable.

Statements containing “null-values” cause an exception by
default. The specific handling of null value exceptions may,
however, be controlled by the #nullvalue directive or by
setting the OSI nullvalue option.

BOOL Example()
{
 …
#nullvalue accept;
 DocFile.Out(“The name is: %s”,Persons(“Miller”).name);
#nullvalue exception;
 …
ON_ERROR
 return FALSE;
FINAL
 return TRUE;
}

Handling types exception (default): In the example above, the file output
function will not work properly, when no person Miller can
be selected. When not using the #nullvalue directive,
the statement causes a null-value exception, because
evaluating the parameter fails. Control is passed to the
next ON_ERROR block in the calling hierarchy (as long as
exception handling does not define different behavior).

accept: When, however, setting the “null value handling” to
accept, the line is executed and a #nullvalue is passed
to the function. In this case, the text “The name is: “ is
written to the output file.

ignore: When setting null value handling to ignore, instead,
the line will not be executed and processing continues with
the next statement.

 …
#nullvalue ignore;
 DocFile.Out(“The name is: %s”,Persons(“Miller”).name);
 …

In order to reactivate the default handling, you may set the
#nullvalue directive to “exception” after executing critical
statement(s).

Calling
functions

When calling sub-functions, the current state for
NULLVALUE handling is passed to the sub-function. After
returning, the NULLVALUE handling works as being defined
in the current function regardless on the state set in any
function called from the current function.

In order to reset the NULLVALUE handling to the current
state of the calling function, the NULLVALUE directive can
be called without parameters.

 …
#nullvalue accept;
 DocFile.Out(“The name is: %s”,Persons(“Miller”).name);
#nullvalue;
 …

OSI nullvalue
option

In order to change the default for NULLVALUE handling
when running OSI functions, the OSI nullvalue option or
environment variable might be set to one of the valid
values. Invalid settings will be ignored.

7.2.4 Final Section

The FINAL section contains a number of statements,
which are executed before leaving the function. Usually,
the FINAL section provides the return value.

When being defined, the FINAL section is called, after the
last statement in the PROCESS section has been processed
or when the PROCESS section has been terminated with an
leave or break operation (“Process Flow Operations”).
The FINAL section is also called in case of an error after
processing the statements in the ON_ERROR block.

The final block is not processed, when leaving the
PROCESS section with the return function (Process Flow
Operations).

When a return value has been defined for the function, an
operand can be passed to the return function, which is
returned as return value from the function. When not calling
the return operation or when not passing an operand to
the return function, the value from the last statement
executed is returned.

7.3 Constructor

OSI supports constructor functions in order to initialize
complex data types. Constructor functions are functions
that get the same name as the data type and are used to
initialize an instance with a complex data type. Constructor
functions can be used for initializing local variables in a OSI
function.

 Color my_color(100,100,100); // initialize local variable

One might call a constructor also with an object instance in
order to initialize the object in the PROCESS section of a
function.

VARIABLES
 Color my_color; // create variable
PROCESS
 my_color.Color(100,100,100); // initialize variable

7.4 Statements

Statements are basic operation units of a function. Each
function is a sequence of statements, which are executed
as they are defined.

7.5 Global Functions

An OSI application must contain at least one global
function, which is used as entry point for the application.
By default, the entry point for the application is main, but
you may use other names or several entry points to the
application, which must be passed to the OSI interpreter
when calling the application.

bool main(STRING applname)
{
 …
}

In contrast to class functions, global functions are not
preceded by the FUNCTION keyword.

From within a global function you can call static or non-
static class functions, only, but no other global functions.
This means, that all functions, except the entry point
functions, must be defined as class functions. General
purpose functions can be provided in a “Common” class
as static functions.

In the scope of a global function one has only access to
local and global variables, extents and static class
functions, i.e. each access path in a global function must
begin with a global or local variable, an extent name or a
class name (as scope operator).

7.6 Class Functions

7.7 Local Functions

8 Operation Reference

This section provides a list of built-in operations and their
functionality. Built-in operations are operations, which are
provided as syntax elements, but also functions supported
for ODABA collection template classes and other built-
types.

An OSI built-in operation is a statement, which is
expressed as:

Syntax function
Built-in class function
System function

8.1 Syntax Functions

Syntax functions are functions, which are part of the OSI
syntax. Syntax functions are supported as function
operations, process flow operations and query operations.

8.1.1 Process Flow Operations

Process flow operations allow controlling the execution
sequence of statements. Process flow operations support
conditional processing and specific jump operations
(process control).

Conditional
processing

Conditional processing provides some syntax function,
which can process a statement or a block of statements
after checking certain conditions.

if | IF An if-block defines a conditional execution of statements.
When the condition returns true, the statement or block
following the condition is executed. If not, the else-
statement or block is executed, when being defined.

if (a > b) c = a-b;
else c = b-a;

switch |
SWITCH

A defines a complex conditional execution of statements.
Each is compared with the switch-operand. The
statements for the first CASE-operand that returns true for
the comparison, are executed until the next break or
leave statement,

switch (sex)
{
 case “Female” : text = “Mrs.”; break;
 case “Male” : ;
 default : text = “Mr.”;
}

In contrast to C++/Java, CASE-operands and switch-
operands may contain operand expressions instead of
constants. Moreover, empty CASE-statements require a
semicolon, as well as the break statement.

while |
WHILE

A while-block defines a conditional loop. As long as the
condition returns true, the statement or the statements in
the block are executed.

While (Persons.next)
 Total = total + Persons.income;

for | FOR A for block defines a loop initialization in the first multiple
operand statement (init_operands). Initialization is
executed once each time, when the for block is entered.

The next multiple operand statement may contain one or
more conditions, which are combined by logical AND.
When all conditions are true, the statement or block
defined after the for statement is executed. When at
least one of the conditions returns false, the for loop
terminates.

The final multiple operand list will be executed after each
loop iteration, e.g. for increasing the loop count.

for (i=0, j=0; i<10, j<10; i=i+1, j=j+1)
 c = c + i*j;

Process control Process control statements allow changing the process
sequence of statements. OSI does not support GOTO
statements. Instead, additional process control statements
have been added, which allow handling errors and
exceptions.

All process control statements require a semicolon at the
end.

continue |
CONTINUE

The continue operand causes the function to start the
next iteration of a loop. The continue operation makes
sense only within a while or for block. Within a for
block, the continue operation will continue with the final
operand list.

for (i=0, j=0; i<10, j<10; i=i+1, j=j+1)
{
 if (j==7) continue; // next iteration
 c = c + i*j;
}

break |
BREAK

The break-statement terminates the processing of
statements in a block and goes to the end of the block.
The block end is the next ‘}’, which closes the block of
statements, where the break has been called.

switch (sex)
{
 CASE ‘Male’ : … // processing for male persons
 break; // leave switch block
 CASE ‘Female’ : … // processing for females
 break; // leave switch block
 DEFAULT : error(99); // indicate error
}

leave |
LEAVE

The leave operand causes the function to leave the
PROCESSING block. When a FINAL block has been
defined, the function continues with the FINAL block.
Otherwise the function terminates and returns the value of
the last statement executed.

BOOL Person::SendMessage
{
VARIABLES
 BOOL to_late = Time > (Time)’17:00’;
 BOOL message_sent = false;
PROCESSING
 if (to_late) leave;
 … // prepare and send message
 message_sent = true;
FINAL
 return(message_sent);
}

return |
RETURN

The return operand causes to leave the function
immediately. When passing an operand to return, the
value of the passed operand is returned. Otherwise, the
value provided by the last operation (statement) executed
will be returned. The returned value will be converted to
the data type defined for the return value of the function.
When no return value type has been defined for the
function (VOID), no value is returned.

error |
ERROR

The error operation causes the function to terminate.
When an error block has been defined the function goes
to the ON_ERROR block. When no ON_ERROR block has
been defined, the function continues with the FINAL
block, when being defined. When no FINAL block has
been defined, the execution of the function terminates ant
the value of the last statement executed is returned to the
calling function.

BOOL Person::SendMessage
{
VARIABLES
 BOOL to_late = Time > (Time)’17:00’;
PROCESSING
 if (to_late) error(99);
 … // prepare and send message
 message_sent = true;
FINAL
 return(true);
}

You may pass an error code to the error operation,
which can be retrieved from the global variable
_LastErrorCode.

exception |
EXCEPTION

The exception operation causes the function to
terminate and to continue with the next ON_ERROR block
available in the calling hierarchy. When an error block has
been defined the function continues with the ON_ERROR
block. Otherwise it continues with on the ON_ERROR block
of the next higher function in the calling hierarchy.

BOOL Person::SendMessage (STRING receiver)
{
 if (!Persons(receiver).exist) exception(99);
 … // prepare and send message
FINAL
 return(true);
}

You may pass an exception code to the exception
operation, which can be retrieved from the global variable
_LastException.

8.1.2 Built-in Operations

Built-in operations are provided for performing basic
operations. OSI supports conversion operations, default
logical, text and arithmetical operations, assignment
operations and standard query operations.

Conversion
operations

OSI provides implicit conversion whenever required.
Implicit conversion is required always, when an operation
is performed with operands, the type of which does not
match.

 Message(“Anton ” + 5); // prints: Anton 5

E.g. when adding a number to a string, one operand must
be converted. OSI always converts the right operand.
Thus, the following function:

 Message(5 + “Anton ”); // prints: 5

Results in a number (5), since converting the string
“Anton “ to a number returns 0.

For solving problems, where implicit conversion is not
sufficient, cast operators can be used.

 Message((STRING)number + “Anton ”); // prints: 5Anton

OSI supports conversion between most data types.
Excluded from conversion are

VOID, BLOB, BIT

Conversion is supported between basic data types and
user-defined data types (enumerated data type – EDT,
complex data type – CDT):

CHAR, → MEMO, BOOL, INT, REAL,
STRING DATE, TIME, DATETIME,

GUID, EDT, CDT1

MEMO → STRING, CHAR, BOOL

INT → STRING, CHAR, BOOL, TIME,
DATE, REAL, EDT

REAL → STRING, CHAR, BOOL, INT

DATE, TIME → STRING, CHAR, BOOL, INT

DATETIME → STRING, CHAR, BOOL, DATE,
TIME, CDT

BOOL → STRING, CHAR, INT, REAL

GUID → STRING

EDT → STRING, CHAR, BOOL, INT,
REAL

CDT → STRING, CHAR, DATETIME,
 CDT2

Converting complex data type to complex data types is
performed by names, i.e. all properties are converted,
which have the same name in source and target. When
properties have complex data types, they are, again,
converted by names of the properties in the corresponding
complex data type.

Collection properties are converted by copying and
converting all collection from the source data type to the
target data type.

Logical
operations

Logical or Boolean operations are operations, which return
TRUE or FALSE always. OSI supports the following logical
operations:

1 Converting string to complex data type requires an extended SDF (ESDF) string type.
2 Complex data type is converted to extended SDF string format

<, >, >=,
<=, ==, !=

Comparison operations are used to compare two values,
where an order of values is implied depending on the data
type. OSI provides implicit data conversion, when data
types are not comparable by converting the right operand
into the data type of the left operand.

NOT(!) The NOT operator is supported for all data types that allow
conversion to BOOL. Data is converted to BOOL before
applying the operator.

AND(&&),
XOR(^),
OR(||),

As well as the NOT operator, all operands are converted
into BOOL before applying the operation to the operands.
Operands, which cannot be converted into BOOL, are
considered having the value FALSE

Arithmetical
operations

Arithmetical operations are operations, which return a
numerical value always. OSI supports the following
arithmetical operations:

- As unary operator, the minus operator multiplies the right
operand with -1. When the right operand is not numeric,
OSI tries to convert it into a REAL number. When this is
not possible, 0 is assumed as value.

+, -, *, /,
%, ^

Binary arithmetical operations require a left operand with a
numeric data type (INT, REAL). The result is provided in
the data format of the left operand. Before, OSI tries to
convert the right operand into the data format of the left
operand. When this is not possible, 0 is assumed as right
operand.

String operations String operations are supported by using arithmetical
operators. Beside those simple string operations
additional string functions are provided, which are
described under “Built-in Functions”.

+ The +-operator allows concatenating two strings. It
requires a text field (STRING, CHAR, MEMO) as left-side
operand. The right side operand is converted into a
STRING data type, when this is not yet the case.

- The operator removes all occurrences of operand 2 in
operand. The operation requires a text operand as left
operand and converts the right side operand into STRING,
if required.

 Message("Paul Miller" - "l"); // prints: Pau Mier

Date and Time
operations

When the first operand for a + or – operation is a Date or
Time value, a date or time operation is performed.

+, - You may add or subtract an integer value to/from a date or
time value. When the right operand is not an integer value,
it is converted into an integer. If this is not possible, the
right operand is assumed to be 0.

Adding or subtracting an integer value to/from date means
increasing/reducing the date by the given number of days.
You may also subtract date values to get the difference
between two dates. In this case, the result is not really a
date but an integer.

 Message(Date – (DATE)"2005/10/01"); // prints: 36
 Message(Date – 1); // prints: 2005/11/05

Adding or subtracting an integer value to/from time means
increasing/reducing the left time value by 1/100 seconds *
right side operand. This works properly also, when the
right side operand is a time value, i.e. you may add or
subtract time values.

Assignment
operations

OSI supports two types of assignment operations:
assignment by value and assignment by reference. In
most cases, the proper operation results from the value
definition, depending on whether the operands are value
or reference operands.

= Value assignment will assign the value of the right
operand to the left operand. This is usually done by
copying the value.

 STRING name;
PROCESSING
 …
 name = “Miller”;

When assigning values, data conversion is performed
whenever required. Data is always converted to the type
of the left operand.

When assigning collections by value, instances are
copied, when the left operand is the owner of the
instances (owning collection). Otherwise, references to
instances are copied. Thus, as result one may get two
different collections referring to the same set of instances.

The left hand operand for a value assignment can be a
value or reference variable.

&= Assignment by reference will not copy the value to the left
operand, but a reference to the value, only. Thus, right
and left operand will refer to the same value and changes
in the value become visible in both operands.

Reference assignments do not support data conversion,
but require data compatibility between left and right
operand. Data can be assigned by reference, only, when
the left operand has been declared as reference variable
and one of the following conditions is true:

 the left operand is of type ANY (VOID)
 the right operand’s type inherits from the left

operands type
 left and right operand have the same type

BOOL Test (Person &pInst)
{
VARIABLES
 STRING &fname;
PROCESSING
 …
 fname &= pInst.name; // reference assignment
 fname = “Miller”; // value assignment, updates pInst.name
 …

The reference assignment in the example assigns the
name of the Person instance to the local fname variable.
The following value assignment assigns “Miller” to the
local fname variable, but also to pInst.name, which is
referenced by fname.

Parameters passed by reference are considered as
reference variables and you may assign a different
reference to the variable. In this case, however, the value
passed by reference to the function will remain.

When assigning an access path by reference to a
variable, the result of the operation is assigned to the
variable. This makes a big difference, when using an
access path e.g. in a loop.

 SET<Person> &children;
PROCESSING
 children &= Persons.children(); // children collection
 while (children.next) // iterares through result
 …
 while (Person().children().next) // iterates through path
 …

When assigning the access path result to the reference
variable, it will be calculated only once. When using an
access path directly in a loop, it will be calculated only,
when the calling object for the path changes.

Set operations Applying arithmetical or Boolean operators on collections
allows performing algebraic set operations. Set operations
will create new collections, which refer to a selected
number of already existing instances, i.e. set operations
do not create new instances.

All operations can be called as built-in functions as well
and are described there.

+, | The union operation combines two collections, i.e. it
creates a new collection, which contains the instances
from both operand collections. The type of the result
depends on the collection type of the operands:

 Type of the first operand, when types of both
operands are identical

 ANY (VOID), when operand types are not
compatible

 Type of first operand, when the second operand
inherits the type from the first operand.

The result collection becomes weak-typed, when the
operand types are not identical or when at least one of the
operands is weak-typed.

The operation is using the distinct option, when the first
collection is a ordered collection with a unique key. In this
case, the result collection is an ordered collection with
unique keys as well.

- The minus operation creates a copy from the first
operand and removes all instances that exist in the
second operand. The type and attributes (weak-typed,
ordered, and unique) of the result collection are the same
as type and attributes of the first operand.

When the first operand is ordered by unique key, the
operation is performed by key, otherwise by object
identity.

& The intersect operation provides all instances, which
appear in the first and in the second operand collection.
The type and attributes (weak-typed, ordered, and unique)
of the result collection are the same as type and attributes
of the first operand.

When the first operand is ordered by unique key, the
operation is performed by key, otherwise by object
identity.

Aggregation
functions

Besides user-defined aggregation functions, ODABA
supports a number of built-in aggregation functions:

 minimum
 maximum
 sum
 average
 variance
 deviation (standard deviation)
 statistic (provides count, sum and square sum)

Usually, aggregation functions need a preceding collection
name referring to the collection of instances to be
aggregated. In order to calculate the aggregated value the
function iterates through the collection (calling object). The
parameter for the aggregation function is the attribute to
be aggregated.

statistic The statistic function is required mainly for providing
statistics in an aggregation model. The function returns a
statistic object (SDB_Statistic), which contains an
integer attribute x0 for count, a float point attribute x1 for
sum and another float pint attribute x2 for square sum.
Moreover, the statistic object provides an OSI interface for
obtaining calculated statistical values for average,
variance and deviation.

The function may apply on numeric values or on statistic
object instances (SDB_Statistic). When applying the
function on statistic object instances, x0, x1 and x2 from
both instances are added. This is typical the case on
higher aggregation levels, which allows applying all
supported statistic functions on any aggregation level.

Optimizing When calling different aggregation functions for the same
collection, each aggregation function will read all collection
instances, which may become quite inefficient. In order to
optimize aggregation in an OSI function, one may define a
variable or parameter with the name partition. When
not preceding the aggregation function with a collection
name, partition is assumed as default calling object
and all aggregation functions with default calling object are
evaluated by one collection iteration.

Views When calling aggregation function in views that contain a
GROUP BY operation, a partition collection is created
implicitly containing grouped instances. In this case,
aggregation functions are optimized also, when not being
preceded by a calling object. Optimizing aggregation is not
done, when the aggregation function call is part of a more
complex expression as
 avr = sum(income)/partion.count()

In order to solve this problem, one may assign the
aggregation function result to a view attribute and defining
the operation result as transient attribute

SELECT (sex, sum_inc = sum(income), min_inc = minimum(income),
 transient int(10,2) avr = aum_inc/partition.count())
 FROM (Persons)
 GROUP BY (sex);

8.1.3 Conditional operands

Conditional operands allow evaluating a value depending
on a defined set of conditions (cases). The operand
following the first condition that returns true will be
returned..

age_group = (age < 16 ? ‘teenager’ :
 age < 30 ? ‘twen’ :
 age < 50 ? ‘middle-aged’:
 ‘oldie’);

Conditional operands may be used in assignments, or
passed as parameters. One may also define conditional
operands when initializing variables.

Wherever conditional operands are used, they require
parenthesis at beginning and end.

8.1.4 Query Operations

Query operations are operations, which are supported in a
traditional database SELECT query.

SELECT (parm_list) FROM (parm_list)
 [WHERE (condition)]
 [GROUP BY (parm_list)]
 [HAVING (condition)]
 [ORDER BY (parm_list)]
 [TO FILE | TO DATABASE (out_spec)] ;

The traditional query format is supported for convenience,
only. In contrast to traditional query languages, OSI
considers each part of the operation as independent
operation or function, which can be called for any
collection. Within OSI, one would rather define an
operation path, which expresses the same query as
sequence of operations, which would look like:

[FROM(parm_list)][.WHERE(condition)][.GROUP(parm_list)]
 [.HAVING(condition)].SELECT(parm_list)
 [.ORDER(parm_list)];

In case of simple FROM source (single collection property),
one could also replace the FROM operation by the
collection name (calling object).

OSI allows combining query operations in any order. The
only condition is, that query operations are preceded by a
collection operand, i.e. you could write e.g.:

Persons.GROUP(string inc_group = (income < 1000 ? 'poor' :
 income < 5000 ? 'medium':
 income < 100000 ? 'rich':
 'very rich'));

Query operations can be defined as any other operand in
an access path, but one may also refer to traditional query
statements as mentioned at the beginning of this chapter.

FROM | from The FROM operation allows combining a number of
collections in a product set (outer join). Also, the FROM
operation supports inner join operations. Usually, it does
not make sense, calling the FROM operation with a single
collection, which will be returned unchanged from the
operation.

Typically, the FROM operation refers to multiple sources as
in the following example:

 FROM (Persons, Companies) …

In this case, the source is constructed from the product set
of the collections passed to the operation. The result can
be considered as complex data type inheriting from the
data types of the referenced collections, Person and
Company in this case, i.e. subsequent operations (e.g.
conditions in a subsequent WHERE clause) may refer to
members in Person/Company instances.

For accessing ambiguous property names in the path, the
property references can be preceded by the collection
name of the referenced collection, e.g. Persons.name or
Companies.name. You may, however, also assign an
explicit collection name to each parameter for the
operation.

 FROM (p = Persons, c = Companies) …

In this case, property references can be expressed as
p.name or c.name. As long as property names are
unique, the collection qualifier can be omitted, since the
FROM data type inherits from data types from operands.

Instead of a complex data type, you may define a property
path.

 FROM (Persons.company) …

Here, the view source again inherits from Person and
Company (the type of company in Persons.company).
From a structural point of view, this would be the same as
in the definition above, but the property path implies
already a selection of Person/Company couples, where
the person is employed in the company, i.e. it corresponds
to an inner join operation. Thus, a property path works
much faster than selecting from a product set.

For accessing ambiguous property names in this example,
the property references can be preceded by the property
name of the referenced collection, e.g. companies.name.

The FROM operation may also refer to access paths or
expressions.

 FROM (p = Person.GetRelatives(),
 c = {Companies.Large() + Companies.Medium();}) …

When referring to an access path or inline function, the
included collections should get a name in the FROM
operation. Otherwise it becomes difficult to access
ambiguous names in the source. Inline functions must
always be enclosed in { … }

The result consists of the product set of the collections
returned as result from the access path or expression.

WHERE | where
HAVING| having

For selecting elements from a collection, a filter condition
can be defined using the WHERE operation.

 FROM (Persons) WHERE (company.count() == 0 &&
 age_years >= 65) …

In an operation path, the WHERE operation always applies
on the preceding collection. Thus, the distinction between
WHERE and HAVING becomes obsolete. Nevertheless, you
may use WHERE as well as HAVING. Both operate in the
same way.

In a SELECT statement, however, the HAVING operation
applies on the SELECT data type while the WHERE
operation applies on the FROM data type.

The WHERE operation will not alter the data type of the
instances, i.e. the output instances for the operation have
the same structure as the input. This is also valid for the
collection attributes (e.g. weak-typed or sort order).

SELECT |
select

The SELECT operation allows defining an implicit defined
complex data type. The SELECT allows defining any
number of attributes or collection properties by defining the
data type, the property name and an assignment
expression defining the value for the property.

 … . SELECT (parameter [{‘,’ parameter}(*)]);

Property definitions (parameter) in a select statement
passed as parameters are similar to view member
definitions in the view definition, except that they are
separated by comma and only support attributes but no
reference properties.

As operands one may define simple property names
defined in the view source, but also operands or member
definitions:

 SELECT (sex, // attribute reference
 string age = age_group, // attribute definition
 int cnt = sum(1) // named operation
 int(10,2) avr_inc = average(income)) // operation source

One may omit data type declarations for SELECT
parameters. In this case, the data type is determined by
the source data type. The source is a property name, an
access path or an expression valid for the data type of the
calling object for the SELECT operation.

The simplest example for a SELECT operation is:
 SELECT (*)

Which does nothing else than returning the instances as
being defined in the source operand (calling object or
FROM operation) for the SELECT operation. This operation
does not make sense in an access path but is supported
because it is required sometimes in traditional SELECT
statement.

Assignment
operand

Each property definition in the select statement may have
a name and an assignment operand. The name is optional
and can be omitted, when the assignment operand is a
simple property in the source for the select.

 Person.select(name, first_name);
 Person.select(n = name, fn = first_name);

The example above refers to two simple operands defined
in the source and the name for the output is taken from the
operand in this case, i.e. both definitions are identical.
When operands become more complicate, properties
should be named.

Data conversion One may request explicit data conversion by defining a
data type for the property name.

 Person.select(STRING(20) name = name, …);

In this case, data conversion is performed according to the
common data conversion rules.

Data source The source for a SELECT operation (view source) in an
access path is the result of the preceding operand. In a
traditional SELECT statement, the view source is the result
of the FROM operation when no grouping has been defined
or the result of the GROUP BY operation otherwise.

Aggregation The SELECT statement supports aggregation functions.
When the SELECT statement contains a GROUP BY
operation, aggregation function may refer to default calling
object partition. When not grouping instances, one
may assign a collection property to view member in order
to use optimizing feature for default aggregations.

 SELECT (sex, name, first_name
 set<Person> &partition = children,
 int(10,2) dev_inc = deviation(income),
 int(10,2) avr_inc = average(income))

When no partition property has been defined,
aggregation functions need a preceding collection name
referring to the collection of instances to be aggregated.
The parameter to be passed to the aggregation function is
a member of the FROM or calling object instance. The
parameter passed to the aggregation function is either an
attribute name defined in the data type of the aggregation
collection or a valid expression for the aggregation
collection data type.

 Companies.SELECT(
 INT(10,2) sum_income = employees.sum(income),
 ...
);

This allows providing aggregated values for different
collections.

partition In order to provide more efficient aggregations, one may
explicitly define a default aggregation collection
partition. Aggregating data in the partition
collection causes a single iteration through the
partition collection regardless on the number of
aggregation functions called.

 Companies.SELECT(
 partition = persons,
 INT(10,2) avr_inc = average(income),
 INT(10,2) dev_inc = deviation(income),
 ...
);

When explicitly defining a partition property, it has to be
defined before referring to the first aggregation function.

As data source for partition one may also define an
expression in the context of the SELECT parent. In case of
GROUP operations, a partition collection is created
implicitly, i.e. all default aggregation function calls refer to
the implicitly defined partition.

For a GROUP BY operation, the SELECT operation could
be defined as in the following example:

 Person.GROUP(name).SELECT(
 family_name = name,
 INT(10) sum_income = partition.sum(income),
 SET<Person> adults = partition.WHERE(age > 18),
);

The expression above aggregates the income for each
family, which has been grouped by the preceding GROUP
operation. Each instance in the result collection gets the
family name, which is the grouping value. Finally, a
collection of adult persons is created for each family name
and added as collection to the result instance.

Since partition is a default property for aggregation
operations, it can be omitted in connection with
aggregation functions, i.e. the statement above could be
written as::

 …
 INT(10) sum_income = sum(income),
 SET<Person> adults = partition.WHERE(age > 10),
);

Since WHERE is not an aggregation function, partition
cannot be omitted for the adults assignment operand.
Supported aggregation functions are described in chapter
“Property handle functions”

ORDER [BY] |
order [by]

Ordering allows changing the sort order of a collection
either to a key name defined for the complex data type of
collection instances or to a list of attributes passed as
operands.

When a persistent index has been defined for the key
name passed as operand, the access key for the collection
will be changed to the defined index. Otherwise, a
temporary key will be defined and a temporary sort order
will be created for the collection. Then, the access key will
be set to the temporary index.

When referring to the operation from within an operation
path, the single word operand GROUP (or group) has to
be used.

 Persons.ORDER(pk) … // orders collection by key pk
 Select(*) ORDER BY(name, first_name) … // orders by names

GROUP [BY] |
group [by]

Grouping provides a way of aggregating data. In an
access path, the instances in the preceding operand
collection are grouped. In a traditional SELECT statement,
instances defined in by FROM … SELECT … WHERE
operations are grouped.

When referring to the operation from within an operation
path, the single word operand GROUP (or group) has to be
used.

partition For each grouping instance, data source instances
belonging to the group are collected in the partition
collection. The partition property will be implicitly defined
for a grouping operation. The type of instances in the
partition collection corresponds to the complex data
type resulting from the calling object or FROM operation.

For each grouping instance, the partition collection
collects all instances from the source operand that return
the same grouping key for the grouping attributes.

When the source data type defines an identifying key, the
partition collection will be ordered according to the
identifying key of the source data type. When the source
data collection is week-typed, partition becomes week-
typed as well. partition will be the instance owner,
when instances passed to the operation are not persistent
instances. Otherwise, partition will reference
instances, only.

The members defined in the grouping parameter list
(parameters for the GROUP BY operation) have to be
attributes of the source operand data type. The attribute
type can be a basic data type, but also a user-defined data
type (enumerated or complex data type). In order to group
by ad-hoc classifications, an appropriate transient attribute
evaluating the value for the ad-hoc classification has to be
defined in the data type of the source operand (e.g. in the
SELECT operation).

 Persons.GROUP(address, sex) …
 Select (*) FROM (Persons) GROUP BY (address, sex) ...

The grouping operation creates an instance in the result
set, which consists of grouping attributes defining a unique
key and the partition collection.

In the example above, one instance will be created for
each city where the person lives, grouping all persons
living in the same city in the partition reference
collection.

Grouping attributes automatically become the identifying
key and the only order key for the result collection.

TO FILE |
to file

TO DATABASE |
to database

Usually, the result of a query or operation is assigned to a
variable in the function. In some cases, one wants,
however, store the result in an external file or in another
database. For exporting the result, two operations are
provided, which can apply on collection operands in an
access path, but which can also be used as OSI extension
in a traditional SELECT statement.

When referring to the operation from within an operation
path, the single word operand toFile has to be used.

File output The output to file operation will export the collection
defined in the source operand or in the SELECT statement
to a file or to console.

 Persons()->toFile (Path=’Console’, FieldSeparator=',',
 Definition=‘extPerson‘, Source=‘store‘,
 FieldSeparator=‘;‘, HeadLine=true) ;

The output to file operation requires an operand list after
the TO_FILE keyword. The operand list requires
parameters with specific parameter names, which allows
omitting parameters, which are set to the default value.
Moreover, the sequence of parameters does not matter.

Path='complete_path_name' - The path name points
to the location for storing the file. The complete path
name should be enclosed in quotes (single or double)
to avoid misinterpretations. The default for path is
‘Console’, which will direct the output to the screen.

PathOption='option_name' - Alternatively to the file
path an option name may be defined. The option must
be set to the file path. The option name is also used as
extent name for the external file collection.

FieldSeparator=';' - This is the field separator, when
another than ‘;’ should be used. The field separator
can be passed as string but also as hexa-decimal
value (e.g. 9 for tab), which corresponds to the
character values.

FileType='csv' - File storage format (xml, csv, oif,
esdf) when this is different from the file name
extension.

Definition='type_name_path' - Name of data type
definition defining for the collection in database.
Instead of a type definition name, a file name for a
definition file (ODL, ESDF or XML format) may be
defined.

Source='source_name' - Property definitions in type
definitions for external data sources may contain any
number of source definitions. Source definition to be
used for export may be identified by source name.
When no source name has been passed, the first
source definition for each property is used. File type
definitions contain only one source for each property,
which is not named, i.e. source name must not be
defined when providing an external (file) definition.

 Persons.toDatabase (Datasource='Output',
 Extent=’ExternalPersons’);

The output to database operation requires an operand list
after the TO_DATABASE keyword. The operand list
requires parameters with specific parameter names, which
allows omitting parameters, which are set to the default
value. Moreover, the sequence of parameters does not
matter.

Datasoure='data_source_name' - The data source
name refers to a data source definition in the ini-file or
in the data catalogue. Default is the current database.

Extent='extent_name' - The extent name refers to an
existing or non-existing extent in the target database
referenced in Datasource.

FROM FILE |
from file

The FROM FILE operation may be used in order to import
data from an external file to the database by means of an
exchange schema. The exchange schema is defied by
means of property sources in property definitions of the
external file. The exchange schema consists of all property
sources with the schema name as source name. In case
of hierarchical files (e.g.XML, OIF or ESDF) the external
file definition may consist of a number of data type
definitions.

When referring to the operation from within an operation
path, the single word operand fromFile has to be used.

 Persons()->fromFile (Path=’Persons.csv’, FieldSeparator=',',
 Definition=‘extPerson‘, Source=‘store‘,
 FieldSeparator=‘;‘, HeadLine=true) ;

The input file operation requires an operand list after the
TO FILE keyword. The operand list requires parameters
with specific parameter names, which allows omitting
parameters, which are set to the default value. Also, the
sequence of parameters does not matter.

Path='complete_path_name' - The path name points
to the location for loading the file. The complete path
name should be enclosed in quotes (single or double)
to avoid misinterpretations. The default for path is
‘Console’, which will direct the output to the screen.

PathOption='option_name' - Alternatively to the file
path an option name may be defined. The option must
be set to the file path. The option name is also used as
extent name for the external file collection.

FieldSeparator=';' - This is the field separator, when
another than ‘;’ should be used. The field separator
can be passed as string but also as hexa-decimal
value (e.g. 9 for tab), which corresponds to the
character values.

FileType='csv' - File storage format (xml, csv, oif,
esdf) when this is different from the file name
extension.

Definition='type_name_path' - Name of data type
definition defining for the collection in database.
Instead of a type definition name, a file name for a
definition file (ODL, ESDF or XML format) may be
defined.

Source='source_name' - Property definitions in type
definitions for external data sources may contain any
number of source definitions. Source definition to be
used for import may be identified by source name.
When no source name has been passed, the first
source definition for each property is used. File type
definitions contain only one source for each property,
which is not named, i.e. source name must not be
defined when providing an external (file) definition.

8.2 Using transient variables

In order to store run-time information or derived data in
persistent class instances, transient attributes or
references might be defined. When defining transient
instances as e.g. context class instances, references
cannot be defined. In this case, all attributes are
considered by default as transient.

Transient attributes are filled automatically, when a source
has been defined (OSI expression) and when the attribute
is accessed. Transient attributes maintained by the
application, have to be set explicitly. In order to refer to
collections or persistent instances, SET variables have to
be defined.

 SET<Person> persen_set;
 SET<Person> &persen_ref;

There is no big difference in defining direct or reference
variables for collections, except, that one may assign a
collection to reference variables, only.

When defining transient variables, those are not valid
(isValid() returns false) as long as they are opened or a
valid collection has been assigned.

 persen_set.open(database,’Person’,AccessModes::Read);
 persen_set.use(Person); // use person extent
 person_ref &= Person; // reference variables, only

Opening or assigning a collection to a transient variable
reserves the property handle for the variable. This
becomes necessary when subordinated properties are
returned to the caller. When not reserving top property
handles, i.e. when defining those as local variables, they
will be destroyed when leaving the function or moved to
the garbage collector and subordinated properties may
become invalid.

8.3 Operation paths

An operation path is an access path, which includes one
or more operations. Operations are built-in functions as
SELECT or INTERSECT, but also user-defined functions or
context functions.

Operation paths can be defined as operation path
variables or as operand in a function.

Operation path includes access paths and property paths,
which refer to property names, only, but not to operation
names.

Operation path
elements

Operation paths consist of one or more elements
separated by path separators (see “Language Reference -
access path”). Elements in an operation path are

 Property references
 Operation calls
 Collection elements

Property
reference

A property reference is a valid property name in the path
referring to a property in the scope of the current function
or to an Extent (first path element) or to a valid property
name in the scope of the preceding operand (second and
following elements).

 Person.children

Property references can be defined as

 Simple property
 Iteration property
 Location property

Simple property references as in the example above are
used in their current state, i.e. no position operation is
performed when executing or initializing the path.

Thus, in the example above the path refers to the
collection of children for the person selected in the
preceding person collection.

Iteration properties are defined by appending () to the
property name.

 Person()

An iteration property in an operation path caused the path
to iterate over the instances in the collection referred to by
the property name.

Location properties are defined by appending an instance
identification as number (position in the collection) or as
sort key value:

 Person(‘0077’).children(0) // first child of person 0077

Defining a location property will cause the path to locate
the instance addressed by the instance identification.

Operation call An operation call is a path element, which refers to

 An OSI function
 A context function
 A built-in function

 Person.count

Operation calls refer to operation names which are valid in
the context of the current function (first element) or in the
context of the preceding path element.

Operations are defined as instance or set operations.
Instance operations operate on each instance passed by
the preceding function

 Person().Print

The example above will print out each person from the
Person extent.

When following an iteration or location property, the
operation must be an instance operation. When following
a simple property the operation might be a collection
operation operating on the preceding collection or an
instance operation operating on the instance selected in
the preceding collection.

 Person.PrintAll

The example above will print out all persons in the Person
extent. In contrast to the prior example, the function does
the iteration over the person collection and not the
operation path.

The result of an operation might be a single instance (or
elementary value) or a collection. Depending on the return
type, the operation behaves as iteration element
(collection) or location element (single instance) in the
path.

Operation
parameters

When passing parameters to an operation call, parameter
values or expressions must be valid in the scope of the
function defining the path (first element) or of the
preceding path element. Parameter operands or
expressions may refer global and local variables, to
constants or to properties defined in scope of the path
element.

 Person().Print(head_line);

Usually, parameter variables are looked for in the scope of
the calling function and not in the scope of the calling
operation element (preceding path element). One may,
however, change the parameter scope to the function
scope by using the @ element separator instead of the
dot.

 Person()@Print(head_line, company_name);

In this case, company_name is found in the context of the
calling object for the function, i.e. in the function scope.

Collection
element

An operation path may define parts of the path as
collection elements. Usually, an operation applies on the
preceding path element.

 Person().cildren.count()

In the example above, the operation path returns a
children count value for each person, i.e. the count
function is called for the children collection for each
person in the person collection.

 [Person().cildren()].count()

Defining a collection operand [] instead in front of the
count operation will cause the path to create a collection
of all persons children before calling count, i.e. the path
returns the number of all children of all persons in this
case.

Operation path
types

Operation paths may react differently depending on the
way they are defined. Three different operation path types
can be defined:

 Iteration path
 Location path
 Execution path

Iteration path An Iteration path contains at least one iteration property,
which is a property followed by ():

 Person().children().children()

Operations in an iteration path are always considered as
iteration elements, i.e. when an operation returns a
collection, the path will iterate over the result set of the
operation as well.

Location path A location path is an operation or access path which
addresses exactly one data instance:

 Person(‘0077’).children(0) // first child of person 0077

A location path may contain properties with a value
selection and operation resulting in a single instance.
When referring to a reference or relationship in a location
path, the property name must be followed by an instance
identification which is either a number (position in the
collection) or a sort key value. Also singular references
must contain the instance identification (usually 0) to
indicate, the an instance needs to be located.

Execution path Usually, an execution path is an operation path with at
least one execution element. The execution element is
introduced by the -> element separator (execute operator)
instead of the dot separator.

 Person().children()->Print

The execution element defines the right most position for
executing the path when being initialized. Thus, is does
not make much sense to define two execution elements in
a path, since the last execution element will be registered
as such.

The part right of the execution element may form an
iteration or a location path. The left part of the execution
element is called once when initializing the path or when
the calling object has changed.

The following example illustrates the difference:
 while (Person().children.count)
 … do something ;

Will call the operation each time when entering the while
loop.

 while (Person().children->count)
 … do something ;

Will call the operation only once and end in an endless
loop in this case.

Initializing the
path

An operation path is initialized always, when processing
the code defining the path. Thus, it is often more efficient
to define an operation path variable then to call the
operation path e.g. in a while loop. In general, one should
avoid calling operation paths directly in loops, because
this is not only inefficient, but may lead to unexpected
results because of the re-initialization in each loop
iteration.

There are, however, some typical examples, where
operation paths in loops make sense:

 while (Person.next)
 Person.Print;

Since the next function changes the state of the person
collection, initializing the path will locate the next instance
in the person collection. Since the path is neither an
iteration nor a location path, it will initialize only.

next and previous are typical functions called in loops.

Initializing a operation path includes:

 Locating the instance in a location path
 Positioning an iteration path to top
 Executing the path until the execution element (when

being defined)
 Calling operations in the path as long as the

preceding path element is positioned or the operation
is a collection operation.

Executing the
path

Executing an operation path includes iterating through all
elements for an iteration path. Path execution does not
make sense for location paths, since there is nothing to be
executed.

Execution paths are running in the scope of the preceding
path element, always, i.e. one cannot change the scope to
the current function.

Usually, the execution element is the last element in an
execution path. When an execution path, however, has
path elements left of the execution element, those are
initialized each time after calling the operation.

A path is executed when being initialized the first time.
Later, the path will be executed only, when its calling
object instance has been changed. Hence, calling an
execution path in a loop usually will not cause problems,
since it will be initialized (executed) only once.

Executing a path is automatically done, when defining an
execution element in the path. When an execution
element has been defined in the path, this will cause
iterating over the pert left of the execution element.

 Person()->Print;

The example above has the same effect as the while loop
in the prior example. Because of the execution element
Print() and the iteration part left of it the path automatically
iterates over persons executing the Print() operation for
each person instance.

You may also define execution elements for a location
path. This allows distinguish between class members and
methods.

 Person->first;
 Person.first;

Both examples call first in order to locate the first
person instance. When, however, an attribute first has
been defined for the Person class, only the line will call
the property handle function first, while the second line
refers to the class member.

Operation path
variables

When assigning a query as initial value to a variable, the
query is defined but not executed immediately.

 SET<Person> grand_children =
 Persons().children().children().where(age < 18);

In the example above, the view is assigned to the variable
grand_children and initialized. Later on, in the processing
section of the function you may refer to the variable and
iterate through the collection defined by the variable.

Initializing an operation path includes locating the
referenced instance, when the path is referring to a
specific instance, i.e. when the path is not an iteration
path.

 while (grand_children.next)
 grand_children.Print;

The operation path grand_children.next is initialized each
time when calling the while

8.4 Dynamic function calls

Dynamic function calls is a feature, which allows deciding
at runtime, which function has to be invoked. In order to
call a function dynamically, the function name has to be
passed in a parameter, variable or option variable.

Local variables
and parameter

Calling a function dynamically via local parameter or string
variable, the value for the function name string has to be
set explicitly before calling the function.

 STRING fname;
…
 fname = GetFunctionName(); // returns a function name string
 CALL fname(parm1, …, parmn);

CALL only accepts the variable name followed by the
function parameter list. The parameter list must match the
function patterns of the function to be called. Otherwise,
parameter errors may occur.

Option variables In order to control execution via option variables, functions
may also be called by option variables set in the
application or configuration file..

 CALL %FNAME%(parm1, …, parmn);

When the function name is not valid or when the
parameter list does not match the function definition,
CALL will terminate with error.

8.5 Built-in Class Functions

Built-in class functions are functions provided for different
access classes. Most functions are provided for access
classes.

Restrictions This does not include operators, which are handled
directly by OSI. Also, constructors are not supported,
except the dummy constructors with no parameters.

Instead of calling a constructor, one may call the
appropriate open functions, which are provided for all
access classes.

Interface
functions

OSI supports most of the functions documented in the
ODABA interface classes. Besides access classes, this
includes metadata functions, but also options or date and
time functions.

Access classes In order to provide access do the database, access class
functions are supported.

 Application
 Dictionary
 Database
 ObjectSpace
 Property
 Value

Each variable in an OSI function automatically supports
Property and

Metadata Metadata object types cannot be constructed at all, but
can be obtained from access objects.

 TypeDefinition
 PropertyDefinition
 IndexDefinition
 EnumeratorDefinition

Option Although, options can be accessed directly from within
OSI functions. The Option class has got an interface,
which provides more specific functionality for accessing
options. In order to use option functions, options have to
be created as empty objects and opened afterwards (open
function).

Date/Time Date/Time objects can be created but have to be
initialized by assignment.

 Date
 Time
 DateTime

Service classes Additional classes have been provided in order to support
specific services as file access.

 File - File access
 BinaryFile - Binary file access
 TextFile - Text file access
 IniFile - Configuration or ini-file
 ZipArchive - ZIP File Archive
 MP3File - MP3File handle
 MP3Header - MP3 header handle
 MP3Frame - MP3Frame handle
 XMLString - XML string
 HTTP - Internet protocol
 Email - Sending and receiving emails
 BNFParser - Parser for files or strings with

generic BNF syntax
 BNFNode - BNF tree node

SystemClass Common features are supported by the SystemClass,
which provides some functions in order to support
handling template result, date/time and other features.
The system class is provided as built-in class, i.e. all
functions can be referenced without being prefixed by the
scope operator.

When function names become ambiguous, the scope
operator has to be used:

 Message(“Hello world”);
 SystemClass::Message(“Hello world”);

SystemClass functions are static functions and do not
need a calling object instance. .

9 OSI Templates

OSI templates are a specific way of defining a function.
Usually, OSI templates are used, when having a sort of
text template, which is to be filled with data from the
database.

Since one can use the WriteResult or
FileHandle::Out functions in a OSI function, template
functions are not really required, but are useful in many
cases. In contrast to OSI functions, template functions are
easier to read and easier to write.

OSI templates can be considered as inverse functions, but
there are some restrictions compared with functions.

$template string Test()$
Dear $if (sex == ‘male’)$Mr. $else$Mrs. end $family_name$,
We just got your question concerning $product$, which you are
using since $buing_date$. We have forwarded your problem to
$responsible(0).first_name$\ $responsible(0).second_name$.
You will get an response during the next three days.
…
$return TemplateString$
end

Expressing the template above as a OSI function would
look like:

function string Test () {
 WriteResult(“Dear “,false);
 if (sex == ‘male’) WriteResult(“Mr. ”,false);
 else WriteResult(“Mrs. “,false);
 WriteResult(family_name,false);
 WriteResult(“,”,false);
 WriteResult(“We just got your question concerning “,false);
 WriteResult(product,false);
 WriteResult(“which you are using since “,false);
 WriteResult(buing_date,false);
 WriteResult(“.”,false);
 WriteResult(“We have forwarded your problem to “,false);
 WriteResult(responsible(0).first_name,false);
 WriteResult(“ ”,false);
 WriteResult(responsible(0).second_name,false);
 WriteResult(“You will get an response during the next three
days. \n…\n”,false);

 return TemplateString;
}

You may call templates from within a template etc. The

template result will be generated as templates are called.
Since you may access the template result at any time, you
may also update the generated result during the
generation process.

Since templates are just a simplified way of defining text
functions, you may also mix templates and OSI functions
or create a template result just by calling OSI functions.

9.1 ASCII templates

OSI templates can be considered as inverse OSI
functions, but there are some restrictions compared with
OSI functions.

Special
characters

One may create any sort of text output using template
functions. The only reserved characters in a template are
$ and \. When you have $ or \ in the text, you need to add
a \ before, i.e. \$ or \\ in the text will be converted to $ or \
respectively.

Fill characters Blanks, new lines (0x0D0A or 0x0A) and tabs (0x09) are
considered as fill characters.

In some cases, fill characters are not displayed properly.
Usually, all fill characters between text and embedded
expressions are considered as part of the text constant.

…
$responsible(0).first_name$ $responsible(0).second_name$
…

The text above will generate the following statements
 WriteResult(responsible(0).first_name,false);
 WriteResult(“ “,false);
 WriteResult(responsible(0).second_name,false);

This will also include a blank between first and family
name.

Line breaks or tabs between embedded expressions or at
the beginning of the text are also considered as fill
characters to be displayed in the result.

…
$responsible(0).first_name$
$responsible(0).second_name$
…

This will result in:
 WriteResult(responsible(0).first_name,false);
 WriteResult(“\n“,false);
 WriteResult(responsible(0).second_name,false);

For ignoring line breaks between embedded expressions
you may use the line connector \. Adding a ‘\’ at the end of
a line causes the template to consider the next line as
continuation of the current line. This also allows inserting
line breaks in the template text, which may increase the
readability of the template.

…
This is a longer text constant to be displayed in the result \
in a single line. To make the template more readable, we can \
add ‘\\’ in the template text before line break.
…

Fill character
sequences

All new lines found in the template before and after text
constants are considered as text constants and included
in the result. Thus, the following template fragment

You will get an response during the next three days.
…

Will generate function code as follows:
 WriteResult(“You will get an response during the next three
days. \n…\n”,false);

One may also add explicitly defined fill characters as \n, \t
or \, which will have the same effect.

You will get an response during the next three days.\n…\n

Will generate the same function code as above.
 WriteResult(You will get an response during the next three
days. \n…\n”,false);

Defining reserved sequences as part of the text can be
done by inserting an additional \ in front of the sequence:

You will get an response during the next three days.\\n…\\n

Will generate the same function code as above.
 WriteResult(You will get an response during the next three
days. \\n…\\n”,false);

Later on, Write result will convert double backslash \\ into
single once and the final output appears as:

You will get an response during the next three days.\n…\n

Comments Comments are line comments introduced by //. Comments
can be placed at the end of a line, only, i.e. any text after
the comment-begin is considered as part of the comment
until the line end.

Comments within a text constant are not recognized as
such but considered as part of the text constant. Adding
comments in a template is possible at the beginning of the
template or after embedded code or immediately after a fill
character sequence.

// this is a valid line comment (at beginning of template)
This is part of the template text // and this also
$Data$ // display current data – valid comment

In order to append a comment at the end of a text

constant, you have to insert an explicit line break before
the comment

This is part of the template text \n// now it’s a comment
$Data$ // display current data – valid comment

For generating // sequences as template text, you may
use \/, which will be converted to //.

This is part of the template text \/ generated to the text as //
$Data$ // display current data – valid comment

9.2 HTML Templates

HTML templates In case of HTML templates, however, text included in the
function requires special treatment, because characters as
< or > need to be converted.

This is automatically done, when defining an HTML
template as:

<template>
 <header> string Test() </header>
 <processing>
<body>Dear $if (sex == ‘male’)$Mr. $else$Mrs. end $family_name$,
We just got your question concerning $product$, which you are using
since $buing_date$. We have forwarded you problem to
$responsible(0).first_name$ $responsible(0).second_name$.
You will get an response during the next three days.

…

</body>
$return TemplateString$
 </processing>
</template>

When converting HTML templates to OSI functions, all
text read from the database is converted to HTML by
replacing reserved characters. In this case, the following
code would be generated:

function string Test () {
 WriteResult(“<body>Dear “,false);
 if (sex == ‘male’)
 WriteResult(“Mr. “”,false);
 else
 WriteResult(“Mrs. “,false);
 WriteResult(family_name,true);
 WriteResult(“,”,false);
 WriteResult(“We just got your question concerning “,false);
 WriteResult(product,true);
 WriteResult(“which you are using since “,false);
 WriteResult(buing_date,true);
 WriteResult(“.”,false);
 WriteResult(“We have forwarded you problem to “,false”);
 WriteResult(responsible(0).first_name,true);
 WriteResult(responsible(0).second_name,true);
 WriteResult(You will get an response during the next three days.

\n…
\n</body>”;

 return TemplateString;
}

The difference is in calling the WriteResult function,
which passes true as second parameter to indicate HTML

conversion.

Special
characters

The rules for reserved template characters are the same
as for ASCII templates, i.e. you must escape all special
characters ($ or n), which are supposed to appear as
such, in the fixed text.

Special HTML characters in the fixed text must be defined
in an HTML conform way (e.g. < for <). Transformations
are done only for the text read from the database.

In order to suppress HTML conversion, one may define an
ASCII template instead. In order to suppress HTML
conversion partially, one may modify the generated
function code or define an explicit function.

New lines New lines do not have any effect on the generated HTML
page, but may make the generated code more readable.
The template does not create line breaks
 or
paragraphs <p> from new lines. Those must be defined
explicit in the fixed text as all the other HTML tags.

9.3 Template specifications

In most cases, templates do have a PROCESS section,
only. Templates may have, however, also a VARIABLE
section. ON_ERROR and FINAL sections are not
supported for templates.

General structure ASCII templates can be defined as
$template string Test()$
$VARIABLES$
 int count = 0;
$PROCESS$
 … template text
END

HTML templates look a little bit different like
<template>
 <header> string Test() </header>
 <variables>
 int count = 0;
 </variables>
 <process>
 … template text
 </process>
</template>

Note, that an html template must not contain the
</process> sequence as fixed text in the process section,
since this will terminate the process section. This problem
can easily be solved by calling a separate ASCII template,
which just produces the </process> sequence.

In generel, it is suggested to use ASCII templates rather
than HTML templates.

Template body Template text (fixed text) can be entered in the template
body (process section). Template text contains fixed text
and embedded code.

Fixed text Fixed text is any sequence of characters (including fill
characters as blanks or line breaks) except sequences
enclosed in $...$, which are called embedded code.

There are three types of imbedded code expressions.

Output
expressions

Output expressions are operands (usually database
property names), which are enclosed between $...$

$first_name$
$responsible(0).first_name$
$responsible(0).first_name + ‘ ‘ + responsible(0).second_name$

Thus, you may enter template call for other templates or
operations of any complexity in an output expression, but
no statements terminated by semicolon.

The content of an output expression is directly written to
the target string. In an HTML environment, it is converted
to HTML before.

Embedded code Embedded code does not directly create output, but is
executed as expression code. Embedded code must be
enclosed into ${…}$

${
 while (messages.next)
 WriteResult(message.text,false); // no HTML conversion
}$

Since code may contain WriteResult calls, code may
also add data to the template result. This is one way to
suppress HTML conversion for special texts, which have
already HTML format.

Within embedded code you may refer to template
variables defined in the variable section, to object
variables, parameters and global variables like in an
ordinary function.

Control
sequences

Control sequences are special expressions to control the
text generation. Control sequences work similarly to the
corresponding function constructs.

return The return sequence is required, when the template is
going to return a value as defined in the template header.

$return operand$

The operand for the return value defines the value
returned to the caller. No more text is generated after the
return has been executed.

If else end The if sequence defines a feature for conditional template
generation:

$if condition$
 Text generated when condition is true
$else$
 Text generated when condition is false
end

The else block is optional, but the end must be defined
in any case.

Note that line breaks after the condition become part of the

fixed text and lead to line breaks in the template result.
Thus, sometimes line breaks must not be inserted:

$if (sex == ‘male’)$Mr. $else$Mrs. end

Switch case end The switch block is an enhanced feature for conditional
processing, since it allows defining any number of
processing path.

$switch condition$
$case operand$
 Text generated when the case operand matches the switch
$case operand$
 Text generated when the case operand matches the switch
$default$
 Text generated for other cases
end

In order to handle other (or default cases), the switch block
may contain a default statement.

$switch (hair_color)$
$case ‘blue’$
 Blue is not an accepted hair color. Use \”other\”, instead.
$case ‘yellow’$
 Yellow is not an accepted hair color. Use \”other\”, instead.
$default$
 $hair_color§ is a valid value
end

While end
For end

While and for allow defining loops over arrays or
collections. Similar to the conditional processing, an end
statement is required in any case.

$while condition$
 Text generated as long as condition is true
end

Note, that the defined block must alter the condition.
Otherwise, the loop may never end. Typically, next is
used to iterate through the collection.

$while messages.next $
 Message is: $messages.text$
end

It is, however, also possible to insert imbedded code to
change the condition:

$while (count < 10)$
 Number is: $count$
${++count;}$
end

The same way one may define for-loops according to the
for-syntax defined for OSI functions.

9.4 Template Result

The template result corresponds to the output created by
WriteResult. The WriteResult function appends the
text to the result string, i.e. it will collect the output from
several templates.

Global template
string

Template strings are thread variables, i.e. they are created
separately for each thread. There is, however, only one
template string for each thread, which can also be
accessed as global variable __template__result__.

VARIABLES
 global string __template__result__;

It is, however, not suggested to refer to the template result
via the global variable name, since the global variable
name might be changed. A better way is referring to the
template result via the functions describes below.

SystenClass
support

The SystemClass provides some functions in order to
support handling the template result.

WriteResult The WriteResult function will append the data passed
to the template string. Non-string values are converted to
string according to the common conversion rules.

Write result supports converting data passed in the first
parameter to HTML compatible data by converting HTML
characters:

 > >
 < <
 & &
 “ "

 WriteResult(data); // appends content of data to template
 WriteResult(data,false);// same as above
 WriteResult(data,true); // HTML convetion befor append data

ResetResult The ResetResult function will clear the template string.
The application is responsible to reset the template string
at the beginning or when terminating the processing.

TemplateString TemplateString is a function that returns the template
result as string value. Calling TemplateString, one may
display the template result or write it to file.

// write template result to console
 Message(TemplateString);
// or write template result to file
 FileOpen(file,path);
 file.Out(TemplateString());
 file.Close();

One may also use TemplateString to add data directly
to the template string or to reset the template string:

VARIABLES
 string &tsring &= TemplateString() // template string
 // reference
PROCESS
 Message(tstring);
 tstring = ‘’;
 Message(tstring);
 tstring += ‘new value’;
 Message(tstring);
…

The application is responsible to clear data in the template
string when no longer being used, e.g. by calling
ResetResult.

9.5 Debug templates

Debugging templates may become a little bit complicate,
since error will be detect in the function generated from
the template. Hence, the line numbers will not fit exactly to
the template position. Even templates containing big
amount of expression code may cause problems.

Those can be solved partially by viewing the system
output, since when detecting an error in the generated
code, OSI automatically writes the generated code to the
system output.

10 Trace function calls

In order to measure time used for function calls, a trace
option may be set. The trace option may be set within OSI
functions

#TRACE top;

or as option (or environment) variable.

OSI.TRACE=top

When being set as option variable, all function calls are
traced. When being set within an OSI function, this
function will be traced, only.

Tracing function calls allows measuring time but also
listing function calls sequences.

Trace options Several trace options may be set, which may me also
combined separated by comma, as

#TRACE all, interface; // in OSI function

OSI.TRACE=all, interface ; in configuration/ini file

top Measures total time for function calls that are called as top
functions, which is typically the case when calling a
function via OSI utility or when calling an event handler in
a context class. Usually this option is used to measure
time used by context class functions.

all Measures total time for all function calls. The measured
time is the total time, i.e. when calling sub functions, their
time is included. The function does not measure time used
for ODABA API function calls.

interface Measures total time for API function calls.

hierarchy Measures total time for OSI function calls and time for
each function call in hierarchical sequence.

Trace list The trace results are displayed in semicolon separates
text file OSITrace.csv, which will be written to the directory
defined via TRACE option. All time measures are provided
in milliseconds. Each line in the file contains following
fields:

level Level of function call, which will have a meaningful value
for hierarchy, only. For all other options, the value will be
empty.

class Name of class that implemented the function.

function Function name.

calls Number of function calls.

time Elapsed time, which is the total time for all functions, when
level is empty or the time for a single call when level has
got a value (option is set to hierarchy).

min Minimum time for all function calls when line displays a
total (empty level) and empty otherwise.

max Maximum time for all function calls when line displays a
total (empty level) and empty otherwise.

11 OSI-Debugger

OSI provides a command line debugger, which can be
activated by setting the OSI environment variable

OSI.DEBUG=YES

Or by passing the debug option –DB when calling OSI or
OShell. When running OSI scripts without debug mode,
debug mode may be activated later by pressing ctrl-c.
Then, the debugger will halt at the next statement to be
processed.

When the debug mode is activated, the execution stops at
the first line. You may use the ‘go’ command to continue
execution until the first break point or abnormal
termination of a statement. When the debugger stops the
execution, the current line will be displayed on the
console. The debugger provides several list functions,
which allow displaying the current state of variables and
objects.

When running GUI applications in debug mode
(OSI.DEBUG=YES), those must be called via code
(code.exe) and following option has to be set in addition:

CONSOLE_APPLICATION=YES

in order to redirect application output to console.

Options Some debug options might be set in order to improve
debugging.

Stack limit For detecting infinitive recursive function calls, the STACK
option may be set, which limits the number of stack
frames for calling OSI functions. Usually, a stack limit of
200 should be enough for running most OSI applications:

OSI.STACK=100

When no stack limit has been set, the number of stack
frames is not limited.

Run option In order to start an OSI application without breaking at first
statement, the RUN option may be set to true:

OSI.RUN=YES

When not being set, the debugger breaks at first OSI
statement, which also might be a selection condition or a

context function.

11.1Breakpoints

Break points can be set in advance or during debugging.
Predefined breakpoints are set by inserting ‘#’ in front of
the statement where the execution should break.

while (next)
 if (age > 50)
Message(first_name + ‘ ‘ + name + ‘ is older then 50’);

This will cause the interpreter to stop before submitting the
message.

Predefined breakpoints are ignored, when not running in
debug-mode.

When running in debug mode, OSI automatically stops at
the first statement to be executed.

Break at error When running in debug mode, the debugger will always
stop, when an error has been detected. The command
listed in the command line is the command that failed. You
may correct data and repeat the command (continue), or
you may skip the command (JumpOver).

Breakpoint
location

Breakpoints can be set at the beginning of a statement or
block (if, for, switch, while). When setting a breakpoint for
a while statement, OSI stops ones when entering the
while statement the first time.

while (next) // break ones

To break for each iteration in the loop, the breakpoint can
be set within the while condition:

while (# next) // break always

This can be done also in a for statement. In a for
statement, breakpoints can be set in front of each operand
in the for statement:

for (i=0; # i < age; I = i+1, # next)

This statement will break each time before checking the
condition and always before selecting the next object
instance in the collection (next).

You may set breakpoints in front of an if statement or
within, but this does not make a big difference.

if (# i < age)

if (i < age)

For CASE statements, you may break before checking the

case or after. Breakpoints for CASE statements can be set
in front of the case statement and in front of the
statements to be executed for the case, but not in front of
the case operand.

CASE 5 : next; // break befor check

 CASE 5 : # next; // break when case is true

 CASE # a*b : next; // SYNTAX error !!!!

The difference between the two variants is, that the first
breaks before checking the CASE operand, while the
second breaks only, when the CASE is true, i.e. the switch
operand is 5 in this example.

Debug commands When a break point is reached, you will get a command
prompt for entering debug commands. At each break
point, the current statement is listed in the command line.

DEBUG/Persons># while (next)
DEBUG/Persons>continue

Besides the statement to be executed next, the debug
prompt displays the current context, i.e. the collection or
object instance the function has been called for (in the
example above, this is the Persons collection).

Execution continues, when entering the run command
(RUN).

Debug commands allow displaying variables and object
data. A detailed description of debug commands is given
in “Debug commands”.

Besides specific debug commands you may enter most of
the OShell commands described in “Database Utilities”.

Force halt When running in a loop (e.g. after entering continue or
run), the debugger may be forced to halt at next statement
by pressing ctrl-c. When not running in debug mode, the
debugger will be activated, supposed, the application is
running as console application (e.g. by calling OShell or
OSI). When running GUI applications, one may call code
in order to run the application in a console window.

Procedures For running a series of debugger commands when
reaching a breakpoint, you may define break point
procedures. Breakpoint procedures for the current position
can be invoked from within the debug prompt:

DEBUG/Persons># while (next)
DEBUG/Persons>break bp1

or by defining a breakpoint procedure when setting the
breakpoint:

while (#:bp1 next) // break always

Setting breakpoint procedures causes the debugger to
execute the commands in the breakpoint procedure each
time, when the breakpoint is reached. Breakpoint
procedures may contain any debug or OShell command
except debug run-command, which will terminate the
procedure.

Before setting a breakpoint procedure, the procedure must
be loaded. This can be done from the debug prompt:

DEBUG/Persons># while (next)
DEBUG/Persons>load c:\ODABA\debug.prc
DEBUG/Persons>break bp1

@bp1 must be a procedure defined in the loaded file.
Details about the LOAD command are described in
“Database Utilities/OShell”. Setting the procedure will,
however, not check the name, because the procedure
might be loaded later. When the procedure is not found,
no commands are executed.

Another way of invoking breakpoint procedures is to load
them in an OSI script file.

DEBUGPROCEDURES = c:\ODABA\debug.prc ;

DEBUGPROCEDURES statements cannot be defined within
a class or function, i.e. they must be defined outside any
statement, class, view or function.

You may insert any number of DEBUGPROCEDURES
statements in your OSI file and in each included file.

11.2Reload OSI functions

While running OSI applications in debug mode, one may
automatically reload OSI function updated in the resource
database. This allows correcting syntax errors when not
properly checked in ClassEditor, setting breakpoints while
running the application or updating code in order to
remove bugs. The feature does not work for OSI functions
loaded from external OSI library directory.

In order to automatically reload changes made in OSI
code, the following option has to be set:

OSI.RELOAD=YES

Check functions After updating OSI functions in ClassEditor, those should
be checked in any case in order to make sure, that last
update timestamp has been set properly.

Confirm reload Usually, there is no confirmation requested, i.e. updated
functions are reloaded when being called next time.
Functions are not reloaded when already running, i.e.
when calling a function recursively this will be reloaded
after change only when calling the “top” function.

When detecting syntax error in an OSI function, the error
is reported to console or application output area. In case
of running in debug mode with console output, the
application waits until correcting the problem and
confirming the correction in the resource database.

11.3Debug Commands

Debug commands include most of the OShell commands
described in “Database Utilities/OShell”, except the
Quit/Exit command. There are, however, some command
extensions, which are available in the debug prompt, only.

Command names are not case sensitive. Some of the
commands have abbreviations, but here, we refer to the
long command names in most examples.

The list of commands is not complete. In order to get a
complete command list, help may be called from the
debugger’s command prompt.

Run commands A special subset of debug commands are run commands,
which control the execution. Run commands will terminate
the debug prompt and continue execution of the function.

Continue | c The continue command executes the function(s) until
reaching the next breakpoint.

Step | s The step command breaks in the first statement of the
called function or at the next statement, when the current
statement is not a function call. Since some statements
may have different breakpoints, the step-in command may
break several times at the same line, when going through
with the step-in command.

n The next command breaks at the next statement in the
current function or at the next break point. Since some
statements may have different breakpoints, the step-over
command may break several times at the same line, when
going through with the step-over command.

Finish | fi The finish command finishes the current function and
breaks at the next statement in the calling function or at
the next break point.

JumpOver | o The jump-over command will skip the execution of the
next statement. Depending on the breakpoint setting for
block statements it will skip the whole block, when the
breakpoint reached is at the beginning of the block (e.g.
before the while keyword) or just a block statement or
operand, when the current breakpoint is within the block
statement.

Run | r The run command will continue execution without stopping
at breakpoint anymore. The debugger will still break
execution, when an error has been detected while

executing.

Quit | q This is a run command, which immediately terminates the
application. When running the debugger under OShell, it
does not terminate the OShell, but the debugger, only.

Exit The command will exit the OShell immediately. This is an
emergency function, which might not close all databases
properly.

Frame | f In order to inspect variables and statements in the calling
function hierarchy, one may change the stack frame. The
function allows changing the stack frame. The current
stack frame number is usually 0.

Stack frame numbers are listed when calling back trace
(bt). The currently selected stack frame is marked in the
back trace list.

Jump | j Jumping allows continuing with a statement different from
the currently listed. In order to change to a statement in a
different frame, one has to change the frame before
calling jump.

StackLimit | sl The stack limit might be set in order to detect errors
resulting from recursive function calls. When a stack limit
had been set, the OSI reports an error and breaks into
debugger when the stack limit had been reached.

Stack limit may also be set by setting the option variable
STACK_LIMIT as ODABA option or environment variable.

Breakpoint
commands

Breakpoint commands allow setting and deleting
breakpoints.

BreakAlways |
ba

The break-always command causes the debugger to stop
at each statement, also when choosing ‘continue’ as next
run command. Thus, break-always is similar to the step-in
command.

The break-always command can be reset by using the run
commands StepIn, StepOver, StepOut or JumpOver.

Break | b The break command allows setting a breakpoint at the
current or passed line. In order to set break points in other
frames than the current one, the frame command (f) has
to be called for selecting the proper stack frame. Proper
line numbers may be obtained by calling the list command
in the selected frame (l).

The command allows defining a procedure entry point for
the current breakpoint by passing an entry point name to

the command.

In order to set break points in different functions, one may
set a break point by passing OSI function name.

Break myFunction 10

When the OSI function is not known in the current scope,
the function name has to be preceeded by class (and
namespace) name.

Break “MyClass::myFunction” 10

When the function is stored in an external OSI file, the file
has to be loaded befor (load command).

In order to run a procedure containing debugging
commands, a procedure name might be appended at the
end of the break command

Break proc_name

The procedure with the entry-point is called, when the
breakpoint is reached the next time. When not yet being
loaded, the procedure can be loaded explicitly by calling
the "Load" OShell command.

When a breakpoint procedure has already been set, the
command will deactivate the current breakpoint procedure
and replace it by the new one. When not passing a
procedure name, the current breakpoint procedure will be
reset.

Disable | d The disable command will reset the breakpoint at the
current or passed line. In order to reset break points in
other frames than the current one, the frame command (f)
has to be called for selecting the proper stack frame.

In order to reset breakpoints in another function, the
function name has to precede the line number:

Disable “MyClass::myFunction”10

Display
commands

Display commands allow displaying debug information
about the current state of the debugger.

ListCurrent | lc The command will list the current statement as being
displayed when entering the debug prompt.

List | l The command will list statements and line numbers for the
function in the selected stack frame.

BackTrace | bt The command will list the calling sequence until the

current position.

Data commands For displaying and changing data you may use all data
commands, which are valid in OShell (see “Database
Utilities/OShell”). Some commands, however, behave
differently from the OShell commands.

Print | p The command displays the attribute value for a variable or
object. In extension to OShell, you may display not only
object variables in the current context, but also parameter
values and global or local variables defined in the function.

sav The command allows changing the attribute value for a
variable. In extension to OShell, you may modify not only
object variables in the current context, but also parameter
values and global or local variables defined in the function.

11.4Debug functions

Several debug functions are provided for supporting
offline debugging. Debug functions may be called from
within OSI functions, from the OSI debugger command
line, but also from within internal C++ functions.

Debug functions Currently the following debug functions are available:.

DebugFunction Displays the headline of the function currently active, or
the headline for a function in the calling stack.

DebugLocals Shows the names and values for local parameters

DebugParameters Shows the names and values for all parameters

DebugVariable Shows the value for a single parameter or variable.

12 Running OSI under OShell

You may run OSI scripts under OShell (see Database
Utilities). Data sources referenced in the OSI script must
be pre-selected or provided within the statement.

ODABA>cd Sample
Sample/Persons>cc Persons

Now, you may enter an OSI function for a Persons
collection:

Sample/Persons>osi do
Sample/Persons>VARIABLES
Sample/Persons> …. Epression variables
Sample/Persons>PROCESS
Sample/Persons> statements
Sample/Persons>end

begin or do OSI functions can be introduced by osi do or osi
begin. Using begin keeps the result open after
processing the query. This allows browsing complex
results after evaluation.

When printing the result to console or to a file, it is
suggested to use do instead.

comments In order to add comments, those have to be defined on
separate lines and beginning with // at the beginning of the
line.

Debug mode In order to enable or disable the script debug mode, the
OSI.DEBUG option might be set at the beginning of the
OShell procedure.

Sample/Persons>set OSI.DEBUG=YES
Sample/Persons>osi do
Sample/Persons> ...
Sample/Persons>end

13 References

[1] ODMG: The Object Data Standard ODMG 3.0, Academic Press, 2000

[2] ODABA Script Language Reference, 2005

[3] ODL Guide, 2005

[4] R. Karge, Unified Database Theory, run-software, 2003

	1 Introduction
	2 Overview
	2.1 Running OSI
	2.2 Defining Data Sources
	2.3 INI-file for OSI

	3 How to Write an OSI Script File
	3.1 Database References

	4 File References
	5 Data Types
	5.1 Basic Data Types
	5.2 Enumerated Data Types
	5.3 Structure Definitions
	5.4 Interface Definition
	5.4.1 Interface Exports

	5.5 Class Definitions
	5.5.1 Class header
	5.5.2 Type Property List for Persistent Classes
	5.5.3 Class Exports
	5.5.4 Class Extensions

	5.6 View definition
	5.6.1 View Header
	5.6.2 Type Property List for Views
	5.6.3 View Members

	5.7 Aggregation schema
	5.7.1 Aggregation example
	5.7.2 Aggregation levels
	5.7.3 Accessing aggregation collections

	5.8 Template Data Types
	5.9 Member Definitions
	5.9.1 Inheritance
	5.9.2 Members
	5.9.3 Attributes
	5.9.4 References
	5.9.5 Relationships
	5.9.6 Keys and Key References

	6 Variables
	6.1 Database Variables
	6.2 Global Variables
	6.3 Self variable and execute operator
	6.4 Lookup priorities

	7 Functions
	7.1 Function Header
	7.1.1 Function Options
	7.1.2 Type of Returned Value
	7.1.3 Function Parameters

	7.2 Function Body
	7.2.1 Variable Definitions
	7.2.2 Processing
	7.2.3 Error handling
	7.2.4 Final Section

	7.3 Constructor
	7.4 Statements
	7.5 Global Functions
	7.6 Class Functions
	7.7 Local Functions

	8 Operation Reference
	8.1 Syntax Functions
	8.1.1 Process Flow Operations
	8.1.2 Built-in Operations
	8.1.3 Conditional operands
	8.1.4 Query Operations

	8.2 Using transient variables
	8.3 Operation paths
	8.4 Dynamic function calls
	8.5 Built-in Class Functions

	9 OSI Templates
	9.1 ASCII templates
	9.2 HTML Templates
	9.3 Template specifications
	9.4 Template Result
	9.5 Debug templates

	10 Trace function calls
	11 OSI-Debugger
	11.1 Breakpoints
	11.2 Reload OSI functions
	11.3 Debug Commands
	11.4 Debug functions

	12 Running OSI under OShell
	13 References

