

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101

run

Function Reference

ODABA
NG

- 2 -

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 - 3 -

Content

1 Introduction .. 20
ODABA2 ... 20
Platforms .. 20
Interfaces .. 20
User Interfaces ... 20

2 Class Overview .. 21
Access Classes .. 21
Definition Classes... 26
Context Classes ... 27
Service Classes .. 30
Enumerations ... 31

3 Alphabetic Class List .. 33

ActionType - Action Types .. 34
ACT_undefined - Action type undefined .. 34
ACT_Constant - Constant action ... 34
ACT_Document - Document action ... 34
ACT_Expression - Expression action... 34
ACT_Function - Function Action .. 35
ACT_Jump - Jump Action .. 35
ACT_ParmAction - Parameter action ... 35
ACT_Program - Program Action .. 35
ACT_Menu - Menu Action .. 35
ACT_Window - Window Action .. 35

BNFData - BNF data element ... 36
BNFData - Constructor ... 36
CreateParser - Create ad-hoc parser... 37
GenerateSource - Generate source file for a parser........................ 37
GetElement - Get Element ... 38
GetSymbol - Looks for expression a given symbol (recursive) 38
GetValue - Provides the element value as string 39
GetValueLength - Get value length .. 39
HasData - Has node data ... 39
IsA - Is expression a given symbol... 39
IsValue - Has expressio a given value ... 40
Position - Current position in string .. 40
Print - Print syntax tree ... 40

BNFExpression - BNF expression .. 42
AddElement - Add element to expression. 42
Analyze - Analyse expression .. 43
NextExpressions - ... 43

- 4 -

BNFParser - Parser for BNF strings .. 44
Analyze - Analyse string ... 44
AnalyzeFile - Analyse BNF definition provided in a file.................... 45
BNFParser - Constructor .. 46
GetLastError - Return last parser error .. 47
IsValidString - Checks, whether the symbol passed is valid 47
ListSymbols - List symbols for the parser .. 47
ResetLastError - Reset last parser Error ... 48
~BNFParser - Destructor .. 48

BNFSymbol - BNF symbol .. 49
BNFSymbol - Konstruktor .. 49
ElementaryToken - Provide symbol for elementary token 49
SetTerminal - Mark symbol as terminal symbol 50
~BNFSymbol - Destruktor .. 50

CTX_Base - General Context Class ... 51
CTX_Base - Konstructor .. 51
CheckPermission - Check Permission ... 52
Close - Close Handler .. 52
CreateAction - Create action from action resource 52
CreateCAction - Create complex action ... 53
DataState - Get data state ... 53
DeleteData - Delete data handler... 54
DisplayDecision - Display decision .. 54
DisplayMessage - Display message .. 55
DisplayState - Get display state ... 55
ExecuteAction - Execute action ... 55
ExecuteFunction - Execute function... 56
ExecuteProgram - Execute program .. 58
FillData - Fill data handler .. 58
GetActionResult - Get last action result ... 59
GetContextType - Get context type.. 59
GetDecision - Get decision .. 59
GetMessageString - Get message string ... 60
GetPropertyHandle - Get Property handle 60
GetResourceName - Get resource name .. 60
HighContext - Get parent context ... 61
InitData - Init data handler .. 62
InsertData - Insert data handler ... 62
IsEdit - Can data be updated ... 62
NextData - Next data handler ... 63
Open - Open context .. 63
Parm - Provides parameter .. 63
PreviousData - Previous data handler ... 64
ProcessState - Get process state .. 64
ResetData - Reset data handler ... 65

 - 5 -

SaveData - Save data handler ... 65
SelectData - Select data handler ... 65
SetActionResult - Set action result ... 66
SetDataState - Set data state .. 66
SetDisplayState - Set display state .. 66
SetParm - Set Parameters for context action 67
SetUserState1 - Set first user state.. 67
SetUserState2 - Set second user state .. 67
SetUserState3 - Set third user state .. 68
SetupParm - Setup parameter list options 68
StoreData - Store data handler .. 68
UserState1 - Get first user state ... 69
UserState2 - Get second user state ... 69
UserState3 - Get third user state ... 69

CTX_DBBase - Base class for data base contexts 70
CheckPermission - Check permission ... 70
DBBeforeRead - Before read event handler 71
DBClose - Close event ... 71
DBCreate - Before create handler.. 72
DBCreated - After create handler... 72
DBDelete - Before delete handler .. 72
DBDeleted - After delete handler ... 73
DBInitialize - Initialize handler .. 73
DBInsert - Before insert handler ... 73
DBInserted - After inserted handler.. 74
DBModify - Modify handler ... 74
DBNotCreated - Not created handler ... 75
DBNotDeleted - Not deleted handler ... 75
DBNotInserted - Not inserted handler .. 75
DBNotOpened - Not opened handler ... 76
DBNotRemoved - Not removed handler .. 76
DBOpen - Before open handler .. 76
DBOpened - After Open handler .. 77
DBRead - After read event ... 77
DBRefresh - Refresh handler ... 77
DBRemove - Before remove handler ... 78
DBRemoved - After remove handler .. 78
DBStore - Before stor handler .. 79
DBStored - After strore handler .. 79
ExecuteAction - Execute action ... 79
GetPropertyHandle - Get Property handle 80
GetSysDict - Get system dictionary ... 80
HighDBContext - Get next higher database context 81
SetTransactionError - Set trasaction error 81

CTX_DataBase - Database Context ... 82

- 6 -

CTX_DataBase - Konstructor ... 82
GetDBHandle - Det database handle... 82
~CTX_DataBase - Destructor .. 82

CTX_Object - Database Object Context ... 83
~CTX_Object - Destructor .. 83

CTX_Property - Property contexts .. 84
DBRefresh - Refresh handler ... 84
GetInstContext - Get Instance context ... 85
GetPropContext - Get Property context ... 85
GetPropertyHandle - Get Property Handle 85
GetResourceName - Get resource name .. 86
GetStructContext - Get structure context ... 86
IsEdit - Can data be updated ... 86
IsReadOnly - Is read-only enabled ... 87
SetReadOnly - Set read only ... 87
SetResult - Set value for action result .. 87
SetTransactionError - Set Transaction Error 88

CTX_Structure - Structure Context ... 89
BuildObjDescription - Create an object description 89
CTX_Structure - Structure context constructor 89
CopyTo - Duplicate instance .. 90
GetContextType - Get Context type ... 90
GetInstContext - Get Instance context ... 90
GetInstance - Get instance .. 90
GetKey - Get Key value ... 91
GetOldField - Provide property handle for old instance 91
GetOldInstance - Get old instance ... 91
GetPropContext - Get Property context ... 91
GetPropertyHandle - Get Property handle 92
GetReadOnly - Is context set to read-only? 92
GetRefContext - Get referenced context ... 92
GetResourceName - Get resource name .. 93
GetSourceField - Get source field .. 93
HideInstance - Hide instance ... 93
IsEdit - Can data be updated ... 94
IsHidden - Is instance hidden ... 94
IsReadOnly - Has instance been set to read-only 94
SetKey - Set key in instance area .. 94
SetReadOnly - Set instance to read-only ... 95
SetRefContext - Set reference context .. 96
SetResult - Set Result .. 96
SetTransactionError - Set Transaction Error 96
ShowInstance - Show instannce .. 97
~CTX_Structure - Destructor.. 97

 - 7 -

DBErrorHandle - Database Error Handle .. 98
DBErrorHandle - Constructoe .. 98
DisplayMessage - Display message .. 98
GetError - Get error text from resource database 99
GetErrorHelpID - Get context help id for the error 99
GetObjectHandle - Get resource object handle 99
SetObjectHandle - Set resource object handle 100
~DBErrorHandle - Destructor ... 100

DBFieldDef - Definition for the internal presentation of property data 101
DBFieldDef - Constructor ... 101
GetDBStruct - Get Database structure definition 103
GetExtendName - .. 104
GetIndexDef - .. 104
IsBaseCollection - ... 105
get_clst_table - Instances of property collection are stored in a cluster105
get_create - Property is allowed to create new instances 106
get_depend - Instance(s) depends on the relationship 106
get_extend - .. 106
get_gen_type - .. 106
get_initval - .. 106
get_inverse - .. 107
get_inverse_name - .. 107
get_mb_number - .. 107
get_multikey - .. 107
get_owning - .. 107
get_privilege - .. 107
get_static - ... 107
get_transient - ... 107
get_update - .. 108
get_version - .. 108
get_virtual - .. 108
get_weak_typed - .. 108
operator= .. 108
set_initval ... 108
~DBFieldDef - Destructor ... 109

DBObjectHandle - Database Object handle.. 110
BeginTransaction - Start transaction .. 111
ChangeTimeStamp - Change time stamp for current version 112
Close - Close Object Handle .. 113
CommitTransaction - Commit transaction 113
DBObjectHandle - Create an Database Object handle.................. 114
DisableEventHandling - Disable event handling 119
EnableEventHandling - ... 119
EventHandling - Is event handling enabled? 119
ExecuteDBObjectAction - Execute object context function 120

- 8 -

ExtentExist - Does Extent exist in database object 120
GetAccess - Get access mode for object handle 121
GetActionResult - Get result from last action executed 121
GetDBHandle - Provide database handle 121
GetDictionary - Get dictionary handle .. 122
GetExtent - Provide extent form Database Object 122
GetHighObject - Get parent object ... 122
GetObject - Get Database Object .. 123
GetStructDef - Get structure definition ... 123
GetSystemVersion - Get system version 123
GetTimeStamp - Get date/time for version 124
GetVersion - Get version number for the time point 124
IsClient - Is database object client object? 125
IsOpened - Is database object opened? .. 125
IsValid - Is database object valid?.. 125
NewVersion - Create new version .. 126
Open - Open database object handle .. 126
RollBack - Roll back transaction .. 132
SetActionResult - Set result string ... 132
SetOverload - Set object overload ... 133
SetServerVariable - Set system variable on server 133
SetVersion - Set current version .. 134
VersionCount - Get number of versions ... 135
VersionIntervall - Get version interval .. 135
operator bool - DBObjectHandle opened? 136
operator= - Assigning a database object handle 136
operator== - Are handles using the same access blocks? 136
~DBObjectHandle - Destructor .. 137

DBStructDef - Definition for the internal presentation of data structures
and enumerations .. 138

DBStructDef - Constructor ... 138
GetAttrPath - Provide path for the indexed attribute 139
GetEntry - Provide DB-FieldDefinition entry 140
GetRefPath - Provide path for the indexed reference 141
GetSortKeySMCB - Provide key definition 141
GetStrDefVersion - Provide structure definition for a previous scheme
version .. 142
IsBasedOn - Is the data structure a specialization of another one ?
.. 142
get_attr_info - Provide information about the attribibutes of the data
structure ... 142
get_base_info - Provide information about the base structures of the
data structure ... 143
get_refr_info - Provide information about the references of the data
structure ... 143

 - 9 -

get_rshp_info - Provide information about the relationships of the data
structure ... 143
get_sb_number - Provide SubBase number 143
get_schema_ver - Provide the scheme version 143
~DBStructDef - Destructor ... 144

DB_Event - Database Events ... 145
DB_undefined - Event is undefined.. 145
DBO_Initialize - Initializing an instance .. 145
DBO_Read - Read event ... 146
DBO_Stored - Instance stored ... 146
DBO_Inserted - Instance inserted .. 146
DBO_Removed - Instance removed from collection 147
DBO_Deleted - Instance deleted ... 147
DBP_Modify - Before Modify Instance ... 147
DBP_Insert - Before Insert Instance .. 148
DBP_Remove - Before Remove Instance 148
DBP_Delete - Before Delete Instance ... 149
DBO_Opened - Instance or property opened 149
DBO_Close - Property or instance context closed 149
DBP_Create - Create Instance .. 149
DBO_Created - Instance created ... 150
DBP_Store - Store Instance ... 150
DBO_NotCreated - No instance created .. 150
DBO_NotInserted - Instance not inserted 151
DBO_NotOpened - Context not opened .. 151
DBO_NotRemoved - Instance not removed 151
DBO_NotDeleted - Instance not deleted .. 151
DBO_Refresh - Refresh Event ... 152
DBP_Open - Opening instance or property context 152
DBP_Read - Before Read Event .. 153
DBP_Select - Select Instance .. 153
DBP_Unselect - Unselect instance .. 153

DataSourceHandle - Data source ... 154
BeginTransaction - Start transaktion for the data source............... 154
Close - Close DataSourceHandle .. 155
CloseDBObject - Close DBObjectHandle 155
CloseDatabase - Close DatabaseHandle 155
CloseDictionary - Close DictionaryHandle 156
CloseProperty - Close PropertyHandle .. 156
CommitTransaction - Terminate transaction 156
Connect - Connect DataSourceHandle to server 157
DataSourceHandle - Construcktor ... 157
Disconnect - Disconnect from server ... 157
GetClient - Get client handle from data source 158
Open - Open DataSourceHandle ... 158

- 10 -

OpenDBObject - Open DBObjectHandle 160
OpenDatabase - Open DatabaseHandle 161
OpenDictionary - Open DictionaryHandle 161
OpenProperty - Open PropertyHandle ... 161
RollBack - Roll back modifications made in the transaction 162
SetDBObject - Set DBObjectHandle .. 162
SetDataSource - Set data source definitions 163
SetDatabase - Set DatabaseHandle .. 163
SetDictionary - Set DictionaryHandle ... 164
SetVariables - Set variables from INI-File 165
Setup - Setup data source parameters .. 167
SetupVariables - Setup data source variables from INI-file 168
~DataSourceHandle - Destructor ... 168

DataTypes - ODABA data types ... 169
CHAR - Character .. 169
CCHAR - Coded character ... 169
STRING - String character ... 169
MEMO - Memo character ... 169
INT - Signed integer or decimal number .. 169
REAL - Float point number ... 170
LOGICAL - Logical field ... 170
DATE - Date ... 170
TIME - Time .. 170
DATETIME - Timestamp .. 171
VOID - Unknown type .. 171
BIT - ... 171

DatabaseHandle - Database Handle .. 172
ActivateShadowBase - Activate Shadow Database....................... 173
ChangeRecovery - Enable/disable recovery support..................... 173
CheckLicence - Check Application License 174
CloseRecovery - Close recovery file .. 175
CloseWorkspace - Close Workspace... 175
ConsolidateWorkspace - Consolidate Workspace 175
DatabaseHandle - Konstructor ... 176
DeactivateShadowBase - Deactivate Shadow Database 181
DeleteWorkspace - Delete workspace ... 181
DisableWorkspace - Disabeling workspace feature 182
DiscardWorkspace - Discard Workspace 182
EnableWorkspace - Enable workspace feature 183
ExecuteDatabaseAction - Execute action on database level 183
ExistWorkspace - Exist workspace? .. 184
GetDatabaseID - Get database resource number 184
GetPath - Get path for the opened database 185
GetRecoveryFile - Provide name of recovery file 185
GetRecoveryNum - Provide reacovery number 185

 - 11 -

GetRecoveryPath - Provide path for recovery folder 185
GetSchemaVersion - Get schema version 186
GetSystemVersion - Get system version 186
GetVersionString - Provide database version 186
GetWorkspace - Get workspace names .. 187
IgnoreWriteProtect - Ignor permanent write protection 188
InitDataArea - Initialise DataArea ... 188
InitMainBase - Initialize main base ... 190
InitRecovery - Initialise recovery file ... 192
InitSubBase - Initialise sub-base .. 192
IsLicenced - Is database licensed .. 193
IsShared - Is database shared by several users 194
LocateWorkspace - Locate an existing Workspace 194
Open - Opening a database handle ... 194
OpenRecovery - Open recovery file ... 198
OpenWorkspace - Open Workspace ... 199
RecreateExtent - Recreate Index for an extent 200
operator bool - Database handle opened? 200
operator!= - Compare database handles 200
operator= - Assignment operator ... 201
~DatabaseHandle - Destructur .. 202

DictionaryHandle - Dictionary Handle ... 203
BaseType - Returns internal number for elementary types 203
CheckExpression - Check expression syntax 203
CopyCodeset - Copy enumeration ... 204
CopyExtentDef - Copy extent definition ... 205
CopyStructure - Copy structure definition 205
CopyType - Copy type definition .. 206
CreateEnum - Create new enumeration .. 208
CreateTempExtent - Create temporary extent 208
DeleteEnum - Delete enumeration definition 210
DictionaryHandle - Create dictionary handle 211
GetExtentDef - Get extent definition .. 213
GetID_SIZE - Size for identifying names in ODABA 213
GetTempName - Get unique name for temporary resource 214
IsBasicType - Is type an elementary type? 214
ProvideExtentDef - Provide extent definition 214
ProvideStructureDef - Provide structure definition from internal or ex-
ternal dictionary .. 215
operator bool - Dictionary opened .. 215
operator= - ... 215
operator== - Compare dictionary handles 216
~DictionaryHandle - Destructor .. 216

Error - General Error object ... 217
CheckError - Check error state .. 217

- 12 -

Copy - Copy error ... 217
CreateExceptions - Throw exception ... 218
DisplayMessage - Dispaly message .. 218
Error - Constructor.. 222
GetDecision - Ask for user decision ... 223
GetErrorHelpID - Get help context id ... 226
GetErrorText - Get Error text .. 227
GetText - Get error text .. 228
GetTitle - Get title ... 228
Initialize - Initialize error ... 228
InsertStatField - Insert status line field ... 229
RemoveStatField - Remove user field from the status line 229
Reset - Reset error text .. 229
ResetAllErrors - Reset all errors .. 230
ResetError - Reset error object .. 230
SetError - Signal error .. 230
SetErrorVariable - Set error variable .. 230
SetHandle - Set error handle ... 231
SetLanguage - Select language for error messages 231
SetSource - Set error resource .. 232
SetStatField - Set value in status line .. 232
SetStatText - Set status line text .. 232
SetText - Set text.. 232
SetTitle - Set error object title ... 233
SetTracePath - Set path for error-log file 233
SetType - Set eror type .. 233
SetupErrText - Setup error text .. 233
TraceMessage - Write message to log-file 234
operator= - Assign error object .. 235
~Error - Destructor ... 235

EventHandler - Event Handler Class .. 236
ActivateProcessEventHandler - Activate process event handlers . 236
ActivateServerEventHandler - Activate server event handlers 236
EventHandler - Konstruktor .. 236
InstanceEventHandler - Instance event handler 237
ProcessInstanceHandler - Process Instance Event Handler 237
ProcessPropertyHandler - Process Property Event Handler 238
PropertyEventHandler - Property event handler 238
~EventHandler - Destructor.. 239

EventLink - Event Link ... 240
EventLink - Constructor .. 240
IsActive - .. 241
~EventLink - Destruktor .. 241

Instance - Instance Handle.. 242

 - 13 -

Key - Key Handle .. 243
GetData - Provide key area .. 243
Key - Konstruktor.. 243
SetData - Set key area ... 243
operator char* - Type conversion ... 244
operator& - Adress operator ... 244
operator= - Assignment operator ... 244

ODABAClient - ODABA client ... 245
ActivateGUIMessages - Activate GUI-Messages 245
Connect - Connect to server .. 246
Disconnect - Disconnect from server ... 246
Exist - Check whether a database exists 247
GetDBError - Get last database error .. 247
GetDataSource - Get data source name 247
GetServerVariable - Get system variable from server 248
IsConnected - Is client connected .. 248
KillClient - Kill client on the server .. 248
ODABAClient - Konstructor .. 249
PackDatabase - Pack database ... 251
SendClientMessage - Send message to one or all clients 251
SetServerVariable - Set system variable on server side................ 252
ShutDown - Shut down client ... 253
StartPause - Pause Server .. 254
StatDisplay - Display database statistics 254
StopPause - Stop pausing server .. 255
SysInfoDisplay - Display system information 255
operator bool - Compare clients ... 256
operator= - Assign ODABA client handle 256
~ODABAClient - Destructor.. 256

ODABAServer - ODABA Server .. 257
GetCatlgName - Get database name from catalogue 257
ODABAServer - Constructor .. 258
Start - Start server .. 258
Stop - Stop server .. 258
~ODABAServer - Destructor .. 258

OperationHandle - Opreartion Handle .. 259
CheckExpression - Check validity of an expression 259
Execute - Execute operation .. 260
GetDimension - Get dimension of returned value 261
GetResult - Get result from the operation 262
GetSize - Get size of returned value .. 262
Open - Open operation handle ... 262
OperationHandle - Constructor .. 262
ProvideExpression - Create expression definition 263

- 14 -

PIREPL - Replace options... 265
REPL_relationships - Copy relationships 265
REPL_instance - Copying parts owned by the instance 265

PIStack - Property handle stack .. 266

PropertyHandle - Property Handle .. 267
Add - Add instance to collection ... 269
AddReference - Add persistent instance 279
AllocDescription - Allocate property description 280
AllocateArea - Allocate instance area .. 282
Cancel - Cancel selection .. 282
CancelBuffer - Cancel all buffered instances 282
ChangeBuffer - Change collection buffer count 283
ChangeMode - Change access mode.. 284
Check - Check property handle .. 285
CheckWProtect - Is current instance permanent write protected? 285
Close - Close Property Handle ... 286
Compare - Compare the values for two property handles 286
CompareKey - Compare two ident key values 290
CompareSortKey - Compare keys accroding to current sort order 291
CompareType - Check properties for comparability 292
Contains - Does property contain text .. 292
ConvertToWinChar - Converts ASCII character into Windows compat-
ible ANSI character set .. 293
Copy - Copy instance ... 295
CopyData - Copy data from an instance area 303
CopyDescription - Create a copy for the property description 303
CopyHandle - Create a copy of the property handle...................... 304
CopyInst - Copy transient instance .. 305
CopySet - Copy collection .. 307
CreateTempExtent - Creates a temporary extent 308
Delete - Delete/remove instance from collection 310
DeleteSet - Delete/remove all instance in a collection 312
Dereference - Dereference collection handle 313
Duplicate - Duplicate instance .. 313
ExecuteInstanceAction - Execute action on instance level 315
ExecutePropertyAction - Execute action on property (collection) level
.. 316
Exist - Is instance selected? ... 316
ExtractKey - Extract ident key value .. 317
ExtractSortKey - Extract sort key value.. 318
Fill - Fill instance from external one ... 318
FillData - Fill instance from external one .. 319
FirstKey - Locate first key ... 319
Get - Get property instance .. 320
GetActionResult - Get result from last action executed 324

 - 15 -

GetArea - Get Instance area .. 324
GetAttribute - Get attribute according to position 326
GetBaseProperty - Get collection handle for base collection 327
GetBufferInstance - Read instance from Buffer 327
GetCollectionID - Returns local collection identity 328
GetCollectionProperty - Get parent collection property handle 328
GetCount - Get number of instances stored for property 328
GetCurrentIndex - Get cursor position ... 329
GetCurrentSize - Get size for selected instance 329
GetCurrentType - Get type for selected instance 329
GetCurrentTypeDef - Get current type definition 330
GetDBHandle - Get database handle .. 330
GetDate - Get Date value for property handle 330
GetDateTime - Get property instance as time stamp (date/time) .. 331
GetDescription - Get property definition ... 331
GetDictionary - Get dictionary handle .. 332
GetDimension - Provide field dimension .. 332
GetDouble - Get property instance as double value 332
GetExtentName - Get extent name for collection 333
GetFieldDef - Get field definition for the property 333
GetGUID - Get global identity string for the current instance 334
GetGenAttrType - Get generic attribute type 334
GetGenOrderType - Get current type for generic sort order of collec-
tion handle .. 335
GetGlobalID - Get global ID ... 335
GetIdentity - Get property identity string .. 336
GetIndexName - Name of the current index 336
GetInitArea - Provide initialized instance area 337
GetInitInstance - Provide initialised instance 338
GetInstModCount - Get update count for selected instance 338
GetInstance - Get current instance .. 339
GetInstanceContext - Get Instance Context 339
GetInt - Get property instance as integer value 339
GetIntValue - Get property instance as integer value 340
GetKeyLength - Get ident key length ... 341
GetKeySMCB - Get ident key definition ... 341
GetLOID - Get instance identity (LOID) ... 341
GetMode - Get access mode for collection handle 343
GetNormalized - Get normalized integer value 343
GetObjectHandle - Get Database Object handle 343
GetOrigin - Get associated property handle 344
GetParentProperty - Get high property .. 344
GetPrivilege - Get access privilege for reference 344
GetPropertyContext - Get property context 345
GetPropertyHandle - Get property handle 346
GetPropertyPath - Get property path for property handle 347

- 16 -

GetRefModCount - Get collection update count 347
GetReference - Get reference from structure definition 348
GetSelectedKey - Get selected key value 349
GetSize - Get instance size .. 349
GetSizeOf - Get size of instance in collection handle 349
GetSortKeyLength - Get sort key length .. 350
GetSortKeySMCB - Get sort key definition 350
GetString - Get property instance as string value 350
GetStringLength - Provide stringlength for instance 351
GetStringValue - Get property instance as string value 351
GetStructDef - Get structure definition ... 352
GetTime - Get property instance as time value 352
GetType - Get basic collection type ... 353
GetValue - Get instance value ... 353
GetVersion - Get version number for selected instance 354
Group - Grouping operation ... 355
HasData - Is data available for property .. 356
HasDescription - Is description available 356
HasGenericAttributes - Does the instance have generic attributes 356
HasIndex - Does a collection have an index? 357
Initialize - Initialise instance area ... 357
InsertTerminator - Insert line terminator for large text fields 358
Intersect - Intersect collections ... 358
IsActive - Is property an active property ... 360
IsAttribute - Is property an attribute? .. 360
IsBasedOn - Is structure derived from passed type? 360
IsBasetypeProperty - Is property member of the base type 361
IsBasicType - Is the type of the PropertyHandle an elementary one ?
.. 361
IsClient - Is property handle a client handle 361
IsCollection - Is property a collection or reference? 362
IsCollectionUpdate - Can collection be updated 362
IsCopyHandle - Is property handle a copy handle 362
IsEmpty - Is property instance empty? ... 363
IsEnumeration - Is the type of the PropertyHandle an enumeration ?
.. 363
IsInitInstance - In instance initialized instance 363
IsMemo - Check property type for memo field 364
IsNewInstance - Is new instance .. 364
IsNumeric - Check property type for numeric 364
IsPositioned - Is instance positioned .. 365
IsReadOnly - Is property read only .. 365
IsSensitive - Is property handle sensitive against modifications 366
IsServer - Is property handle a server handle 366
IsShareBaseHandle - Is property handle for base structure 366

 - 17 -

IsStructure - Is the type of the PropertyHandle a defined Structure ?
.. 367
IsText - Check property type for text .. 367
IsTransient - Is property transient .. 367
IsTrue - Is value for property TRUE? ... 368
IsTyped - Is instance typed? .. 368
IsValid - Check for valid property handle 368
IsValidText - Checks text fields for valid characters 368
IsWeakTyped - Is reference weak typed .. 369
IsWrite - Can instance be updated? ... 369
KeyToString - Convert internal key to string 370
Locate - Locate object by identity ... 370
LocateKey - Locate instance according to key 371
LocatePath - Locate path for path collection handle 373
Lock - Lock instance .. 373
LockSet - Lock collection ... 374
MarkUnused - Mark property handle as unused 374
MarkUsed - Mark property handle as used 374
Minus - Substract collections ... 375
Modify - Mark property as modified .. 376
Move - Move instance to another collection 377
MoveDown - Move instance down ... 379
MoveUp - Move instance one position up 380
NextKey - Locate next key ... 380
NoWrite - Is instance write protected? ... 381
Open - Open property handle .. 382
OpenAccessPath - Open Access Path .. 398
OpenHierarchy - Open hierarchy property handle 402
OwnsData - Owns data area .. 403
Position - Select an instance relative to the current selection 403
PositionTop - Position parent collections 404
Power - Raise to power of .. 404
PropertyHandle - Constructor .. 405
ProvGenAttribute - Provide generic attributes for new instance 421
Provide - Provide instance ... 421
ProvideArea - Provide instance area ... 424
ProvideGUID - Provide Global Instance Identifier (GUID) 425
ProvideGlobal - Provide instance outside the transaction 425
ProvideOperation - Provide operation handle 428
ReadBuffer - Fill instance buffer from position 428
Refresh - Refresh selected instance .. 429
RegisterHandle - Register property handle 430
ReleaseBuffer - Release instance buffer 430
RemoveTerminator - Remove line terminator from large text fields430
Rename - Rename instance .. 431
RepairIndex - Repair Index .. 431

- 18 -

ReplaceSysVariables - Replace system variable 432
ReplaceText - Replace system variable value 432
Reset - Reset instance ... 433
ResetSelection - Reset selection condition for collection 433
ResetTransientProperty - Reset transient property handle............ 433
ResetWProtect - Reset permanent write protection 434
Save - Store instance ... 434
SearchText - Search string in property .. 435
Select - Create a subset from a collection 435
SetActionResult - Set result string ... 436
SetArea - Set area pointer for property instance 436
SetDescription - Set definition for property 437
SetDynLength - Activate dynamic length handling 437
SetGenAttribute - Set type for generic attribute in instance 438
SetInstance - Set basic instance for property 440
SetInstanceAction - Register action in the instance context 440
SetInstanceEventHandler - Set Instance Event Handler 441
SetInstanceProcessHandler - Activate Instance process event han-
dler ... 442
SetKey - Move ident key value to instance 442
SetNormalized - Set normalized value in attribute 443
SetOrder - Set sort order .. 444
SetPropertyAction - Register action in the property contect 446
SetPropertyEventHandler - Set Property Event Handler 447
SetSelection - Set filter condition for collection handle 448
SetSortKey - Store sort key value to instance 449
SetTransientProperty - Setting property handle for transient property
(reference) .. 450
SetType - Set type for weak-typed collection 451
SetVersion - Set instance version to be provided by the collection
handle ... 451
SetWProtect - Set permanent write protection 452
StoreData - Store instance data to property handle 452
StringToKey - Convert string to internal key 453
ToTop - Position to top of collection (before first) 453
Union - Union two collections ... 454
Unlock - Unlock instance .. 456
UnlockSet - Unlock collection ... 457
UnregisterHandle - Unregister property handle 457
ValidateNode - Checks whetehr the Namdle is valid 457
operator! - Negation operator for logical values 458
operator!= - Compare two property instances (not equal) 459
operator% - Remaining part for integer division 462
operator& - AND operator (or intersect) ... 462
operator&& - Logical AND operation .. 462
operator&= - AND operator (intersect collections) 463

 - 19 -

operator() - Locate instance ... 463
operator* - Multiply two properties ... 465
operator*= - Multiply and assign result to first operator 466
operator+ - Sum two properties ... 466
operator++ - Position cursor on next instance 467
operator+= - Sum and assign result to first operator 467
operator- - Subtract properties ... 468
operator-- - Position cursor on previous instance 469
operator-= - Subtract and assign result to first operator 470
operator/ - Devide proprties ... 470
operator/= - Divide and assign result to first operator 470
operator< - Compare two property instances (less) 471
operator<= - Compare two property instances (less or equal) 473
operator= - Assign property instances ... 476
operator== - Compare two property instances (equal) 479
operator> - Compare two property instances (greater) 481
operator>= - Compare two property instances (greater or equal) . 484
operator[] - Locate property instance ... 486
operator^ - Exclusive OR operation ... 488
operator| - OR operation (union set for collections) 488
operator|= - OR operation (union set for collections) 488
operator|| - Logical OR operation ... 489
~PropertyHandle - Destructor .. 489

UtilityHandle - ... 490
CloseDAT - .. 490
CloseDataSource1 - .. 490
NeverCalled - .. 490
OpenDAT - .. 490
OpenDataSource1 - .. 490
OpenRES - .. 491
OpenSYS - .. 491
~UtilityHandle - .. 491

- 20 -

1 Introduction

DEPRECATED The described Interface is partly deprecated. Please
refer to the online documentation on http://run-
software.com/content/documentation/ to review the cur-
rent description. However as the SystemInterface is still
in use this document can be useful.

ODABA2 ODABA2 is an object-oriented database system that
allows storing objects and methods as well as causali-
ties. As an object-oriented database, ODABA2 supports
complex objects (user-defined data types), which are
built on application relevant concepts.

ODABA2-applications are characterised by a high flexi-
bility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represented
considerably better than in relational systems.

ODABA2-applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABA2-applications a favourite possibility
to solve highly complex jobs as come up in administra-
tive and knowledge areas.

Platforms ODABA2 supports windows platforms (Win-
dows95/98/Me, Windows NT and Windows 2000) as well
as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

Interfaces ODABA2 supports several technical interfaces:

 C++, COM as application program interface (this
allows e.g. using ODABA2 in VB scripts and ap-
plications)

 ODBC (for data exchange with relational data-
bases)

 XML (as document interface as well as for data

http://run-software.com/content/documentation/
http://run-software.com/content/documentation/

 - 21 -

exchange)

User Interfaces ODABA2 provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABA2 provides a special ODABA2 GUI builder.

- 22 -

2 Class Overview

Access Classes Acess classes are classes that provide access to the
database. Access classes are provides as access class
handle on different levels (client, dictionary, database,
database object, collection, property).

ODABA Server A ODABA server will manage any number of databases.
After creating an ODABA server it can be started and
halted using the functions Start() and Stop(). There is no
login required for connecting to the server, however, for
accessing a database you may have to pass login infor-
mation to the server. Login-Information must be passed
to the CreateClient function. You can overload this func-
tion in your application procedure to provide specific log-
in checkings and other services for an application ODA-
BA2 server.

The ODABA-server maintains a list (catalogue) for data-
base files. This catalogue must be stored under serv-
er.ini in the ODABA2 installation path. The catalogue
section starts with [ODABA-CATALOGUE].

ODABA client To run client server applications you must create a
ODABA client instance. To support several connections
to different servers you can create one or more clients
within your application.

When connecting to different servers you must create
one client for each server. You can open several clients
in an application. The first client, however, is considered
to be the main client. The main client should be the last
client closed in an application. After closing the main
client you can open another main client. Since there is
no hierarchy defined between clients the system will not
check

The main client registers the process and activates the
error log file. It opens the system database for providing
error messages and the data catalogue if one has been
specified in the system environment (see ODABAClient
constructor). These information are described in an ini-
file, which can be passed to the client.

For initializing and registring the process properly a cli-
ent should be created also for locally running applica-
tions.

 - 23 -

Dictionary Handle The dictionary handle is used for providing schema defi-
nitions from the dictionary. The dictionary creates inter-
nal images from the externally stored schema defini-
tions. These internal images ({.r DBStructDef}) can be
provided by means of dictionary functions.

Because the dictionary is a database handle {.r DBHan-
dle} you can access schema information also directly via
PI functions.

Database Object
handle

Database object handles are necessary for accessing
data in an database object. A database object can be
considered as a database within a database. Each data-
base has a root database object on top. Below each da-
tabase object any number of subordinated database ob-
jects can be created.

Database objects in a database are logically separated
but not physically. Thus, it becomes possible to establish
links between structure instances in different database
objects. Each database object has, however, its own
extents containing the global instances of the database
object.

The database object handle for the root database object
is part of the database handle (-> DatabaseHandle) and
need not to be opened explicitly.

A database object handle is required for opening extent
property handles for accessing structure instances
stored in extents.

The database object handle administrates transactions.
Transactions can be started and stopped for each object
handle. The database object handle is not thread save,
i.e. a database object handle must not be used simulta-
neously in different threads.

The database object supports version slices, i.e. each
database object may have its own current version.

- 24 -

Database Handle Database handle must be created for accessing data in
an ODABA database. An ODABA database must be
connected with a dictionary, which defines the object
model for the database.

Each ODABA database consists of at least one Data-
base Object (Root Object) that is the owner od extents
and other data collections.

When creating a database handle the object handle this
is based on a database object handle (-> DBObjectHan-
dle) for the root object, i.e. the database handle inherits
all the functionality from the database object handle.

A database may consists of a number of physical sepa-
rated mainbases, sub-bases and data areas. This is,
however, handles internally after creating the database.
For creating a multiple resource database the database
handle provides several functions for initializing main
and sub bases and data areas.

Moreover, the database handle provides log and recov-
ery features, that allow logging all changes made on the
database or recovering the database in case of errors.

The workspace feature supported by the database han-
dle is a sort of persistent transactions. It allows storing
changes for a longer period outside the database and
consolidating or discarding changes when requested by
the user.

 - 25 -

Property Handle Property handle are used to handle persistent or transi-
ent data source. A data source is a collection, object
instance or an elementary database field. A data source
contains the data for a property of a specific object.

A property handle usually handles a collection of subse-
quent object instance. In special cases the collection is
singular (e.g. the 'direction' for a persion is exactly one
'Adress' object instance). In other cases the instance is
elementary (as eg the given names of a person).

A property handle has a cursor function that allows to
select one of the instances in the collection as the "cur-
rent" instance. Only from the selected instance you can
retrieve data by means of subsequent property handles
or Get-functions (GetString(), GetTime(), ...) for elemen-
tary datasources.

Generic Property handles

You can define generic property handles using the ge-
neric property handle contructor (PH(type)()). This re-
quires that you have created a C++ header file for the
referenced type. In this case you can access elementary
data field in the instance directly referring to the gener-
ated class members. For references the instance con-
tains corresponding generic property handles that you
can reference by class member name as well. In this
case you need not to create the property handle you
want to access. This makes programming simpler but in
this case you must recompile the application when
changing the database structure. This is not necessary
when referring to property handles hierarchies created in
the appplication.

Property handle hierarchies

Property handles form a tree that defines a specific view
in an application. When defining this view once the
property handles cann be used as long as the applica-
tion follows the defined view. When defining a property
handle for "AllPersons", which is an extent in the data-
base, you can define sub-ordinated property handles for
'name', 'children', and 'company', which refer to the per-
sons name, its children and the company the person is
working for. When selecting another person in the
AllPerson property handle the datasources for 'name',
'children' and 'company' will change. This, however, is
maintained automatically by the systen, i.e. when chang-
ing the selection in an upper property handle the data

- 26 -

Opreartion Handle Operation handles can be used for executing operations
as expressions or function calls. Usually, an operation is
associated with a property handle defining the instance
that is passed to the operation as calling object.

Database Query
Handle

DBQuery allows defining database queries by means of
an ODABA view definition. A database query usually re-
trieves data from the database. It is, however, also pos-
sible to update data in the database.

A database query may refer in different places to OD-
ABA OQL expressions. ODABA-OQL is an object query
language with specific ODABA extensions.

You may run a query against the complete database
(global context) or in a reduced context (instance con-
text). The context for running the query can be defined in
the query. The result of the query can be printed to the
console or directed to an output data source.

Instance Handle Instance handles are used to pass and return structured
database instances. Instead of an instance handle a
(void *) area can be passed, that is automatically con-
verted into an instance handle. The instance area is al-
located and freed by the application.

Key Handle Key handles are used to pass and return keys. Instead
of a key handle a (char *) area can be passed, that is
automatically converted into a key. The key area is allo-
cated and freed by the application.

Event Handler
Class

The Event Handler Class is a base class for supporting
writing event handlers. It provides some basic functional-
ity for setting and calling event handlers for handling
server events.

You may derive your own handler classes from
EventHandler to provide handler functions for server
events. You may overload the handler functions In-
stanceEventHandler() and PropertyEventHandler() for
providing your application specific event handling.

The event handler allows handling instance, property
(collection) or local events. Instance and property events
are client server events that are generated, when an
instance or collection changes. Local events are those
events, which are usually handled in the instance or
property context. You may, however, set event handler
for local events for a specific property handle, which al-
lows overwriting or expanding context functions.

 - 27 -

Event Link This is a function link object for handling events. The
function link stores a pointer to the handler class in-
stance and the function to be called.

The following status indicators are used:

stsini - handler is active and will be executed

Property handle
stack

A property handle stack allows defining a series of relat-
ed property handles. A Property handle stack can be
defined for a property handle and allows activating a
new and saving the current handle using the Push()
function and re-activating the previous handle using the
Pop() function. Thus, it becomes possible, e.g. defining a
sequence of subsequent selections with the possibility of
going back to the prevoius level.

Data Exchange

Data source A data source describes an ODABA data source on a
certain level (Dictionary, Database, DBObject, Extent,
Instance). A data source can be parametrized by means
of an INI-file. The INI file contains the names for the ob-
jects on the different levels. Not specified lower levels
are not opened and have to be opened in the application
(e.g. when defining only dictionary and database the
extent is not opened and no instance is selected), The
datasource is defined as section in the INI-file starting
with the [datasource name].

A data source can be directed to a server. In this case
the datasource has to be opened with a connected
ODABA client or the INI-file must contain a server speci-
fication. In the last case the data source connects to the
server automatically when opening the data source. The
connection is owned by the datasource in this case.

A data source cane be opened and closed as a whole
(Open(), Close()) or separately on each definition level
(Connect(), OpenDictionary(), ...).

Definition Classes Definition classes are classes that mainly provide meta
information about structures and properties. Beside
providing metadata the classed allow creating internally
defined structures for defining temporary object types.

- 28 -

Definition for the
internal presenta-
tion of data struc-
tures and enu-
merations

Definitions for data structures are usually read from an
ODABA2 dictionary. However they can be provided and
filled directly in main storage. Still in this case the defini-
tion should be provided via Dictionary functions to make
them available for the ODABA2 kernel.

From an ODABA2 dictionary structures are provided
only, if they are marked as checked and as ready for a
non test environment.

Definition for the
internal presenta-
tion of property
data

The internal property definition contains all information
available and necessary accessing data of the property.
Among basic information such as type and size it con-
tains special ODABA2 access information such as index
and base collection definitions.

Alls these information are used for reading and writing
data just as to execute operations on properties (see
also {.r DBField}).

Context Classes Context classes allow defining specific behaviour for
access objects on different levels (database, database
object, structure, property). Context classes define the
basic functionality for context classes on different levels.
Context classes allow handling a number of internal
events by overlaoding the default behaviour in the appli-
cation specific context classes. This is a simple way to
react on events as reading or updating an instance.

Behaviour implemented in context classes is application
independent, i.e. it provides a set of basic business rules
and ensures logical database consistency.

 - 29 -

General Context
Class

The general context class is a base class for all data-
base or GUI context classes. A context usually defines a
data element or a data collection in its specific context,
e.g. children in the context of a person or in a list in a
GUI application. In a context the behaviour of object be-
comes more specific, which can be expressed in a con-
text class. Context classes have to be defined in a speci-
fied form according to the type of context to be imple-
mented.

Contexts in an application form a hierarchy, i.e. each
context object has either a parent (upper) context or is a
top context (e.g. database or project context).

Each context has two status properties which reflect the
current state of the context. Since context classes area
created and deleted by the system the current state of a
context class (as opened or closed) is not always clear
for the application programmer. The process state (->
CTX_ProcessState) describes the the current state in
the processing. The display state (-> CTX_DisplayState)
describes the visibility of the context. For GUI context
classes this is the way the associated GUI element is
presented at the moment on the user interface. State
properties are maintained by the system but can be re-
trieved by the application.

Moreover, the context class provides three user states
that can be updated and retrieved by the application.

Context classes signal several events that are relevent
for the specific context. Thus, context classes are typi-
cally used for handling system events as delete or in-
serted for database instances or lose/get focus for GUI
contexts. The enumeration of events supported by a
context class is defined in the cpecific context class im-
plementation.

The context class supports the action interface, which
enables functions in context classes calling actions de-
fined in a reasource database or created internally.

- 30 -

Base class for da-
ta base contexts

The base class for database contexts provides some
basic functionality for data base context classes. In par-
ticular the class provides most of the default event han-
dlers that can be overloaded in specific context classes.
Overloaded handlers need not to call the default han-
dlers since nothing is done in the default handlers. Han-
dlers for database events are usually called within inter-
nal transactions. Thus, all modifications made by the
event handler are reset when the transaction fails.

For a number of database operations Not-events are
generated that are called in case of an error. An error
could be a database (consistency) error but the process
event (before event) could have denied the operation as
well.

Database Context The database context allows defining functionality that is
executed when opening or closing a database. The da-
tabase context does not have a parent context.

The default database context can be overloaded by a
application specific database context class.

Database Object
Context

The Database Object context allows defining functionali-
ty that is executed when opening or closing a Database
Object. The parent context for an object context is an
object con-text (if the Database Object is not the root
Database Object) or the database context (for the root
Database Object).

The default database object context can be overloaded
by a application specific database context class.

Structure Context A structure context is created for each structure type. It
defines the connection between the instance and the
instance description. Moreover, it allows determining the
active con-text hierarchy for the structure instance, i.e.
the parent property/extent, the structure the parent prop-
erty is defined in, the parent parent property etc. Thus,
the structure context defines the context in which the
object instance has been provided.

The parent context for a structure context is always a
property context. This can be the property context for an
extent or for another property within a structure instance.

The structure context allows handling read and updating
events as well as creating or deleting events.

 - 31 -

Property contexts Property contexts are created for extents, references,
attributes, relationships and base structures. The proper-
ty context defines refers to the property instance as well
as to the property definition. Moreover, it allows deter-
mining the active context hierarchy for the property, i.e.
the parent structure/Database Object, the property the
parent structure is accessed from, the parent parent
structure etc. Thus, the property context defines the con-
text in which the property instance has been provided.

The parent context for a property context is a structure
context (when the property is part of an object instance)
or a Database Object context (when the property is an
extent.

The property context allows handling read and update
events, validity checks and insert and remove events.

The default property context can be overloaded by a
application specific property context classes.

Service Classes Service classes provide common database independent
functions that support a number of internally used object
(sorted or linked lists, data convertion etc).

- 32 -

General Error ob-
ject

The error object is used to store and pass error infor-
mation to the application. Errors are identified by error
class and eror number. In addition the class and function
name detecting the problem and a short error explana-
tion can be provided. Moreover, an error may include
upto 6 context depending error variables that can be
displayed in the error message.

Usually error messages are written to a log file (error.lst)
which is stored in a folder addressed by the TRACE en-
vironment or ini-file variable. It is, however, also possible
to display errors on the terminal.

Usually errors should be reset in all functions that may
signal an error. Otherwise the calling function may not
be able to determine whether the error signaled is an old
error or has just been signaled in the called function.
This strategy requires, on the other hand, that signaled
errors have to be saved when other functions are called
in the error handling thet might generate errors again,
since those functions will reset the error. You can use
the Copy() function to save the error.

The way errors are presented in the application depends
on the error handler installed (ErroerHandle). Usually
errors are written to the console output for console appli-
cations and shown in a message box for windows appli-
cations.

Database Error
Handle

The database error handle provides extended documen-
tation for errors detected in the system. In contrast to the
basic ErrorHandle the DBErrorHandle locates signaled
errors in the system or application database and pro-
vides detailled information for the error detected.

A application specific error handle can be defined and
set for enabling application specific error handling (->
ErrorHandle).

Enumerations Several system enumerations define the value sets for a
number of enumerated properties as access mode,
structure types etc.

 - 33 -

Replace options This option is used to control copy or duplicate opera-
tions for instances. The replace option is based on the
existence of in instance in a collection, i.e. whether an
instance with the selected sort key of the target collec-
tion does already exist in the target collection (local ex-
istence) or in one of the base collections of the target
collection (global existence).

Usually, when copying referenced instances the replace
option is passed to the subsequent copy operations.

Action Types Action types allow defining different types of actions that
can be called for reacting on events. Some of the action
types require special runtime environments (e.g. the
Window Action that requires an GUI application and will
not run in a console application). Eac action can be de-
fined by an action specific resource object in a resource
database, when running a database application. Other-
wise the application must provide the required run-time
information for the action.

- 34 -

3 Alphabetic Class List

 - 35 -

ActionType - Action Types

 Action types allow defining different types of actions that
can be called for reacting on events. Some of the action
types require special runtime environments (e.g. the
Window Action that requires an GUI application and will
not run in a console application). Eac action can be de-
fined by an action specific resource object in a resource
database, when running a database application. Other-
wise the application must provide the required run-time
information for the action.

ACT_undefined - Action type undefined

 The action cannot be executed. This option can be set to
prevent the action from running or to indicate an unde-
fined action.

ACT_Constant - Constant action

 The action generates a constant value corresponding to
the action name. When the first character is numeric or
+/- the function returns a numeric value and a string val-
ue otherwise.

ACT_Document - Document action

 A document action generates a document according to a
defined document template. A document action requires
a resource database that contains the document tem-
plate.

Document actions can be described in an AD-
KA_Document resource. Running a document action
requires the Document Interface (DCI), which must be
installed.

ACT_Expression - Expression action

 Expression actions can be defined for calling a local
OQL expression or an expression defined in an OQL
class. OQL expression actions require a database appli-
cation. The resources for an oql-Expression can be de-
fined in an ADKA_Expression resource object.

- 36 -

ACT_Function - Function Action

 Function Actions can be called for functions that have
been implemented as context functions. Function ex-
pressions can be called on the corresponding context
clas, only. The action name corresponds to the function
to be called.

ACT_Jump - Jump Action

 Jump actions are used to pass control to a selected GUI
element. Jum actions can be called for GUI applications
only and are ignored for console applications. The action
name refers to the GUI target element. The action is de-
scribed by an ADKA_Action resource.

ACT_ParmAction - Parameter action

 With a parameter action any type of action can be called
that allows passing a number of parameters. The pa-
rameter action resource (ADKA_ParmAction) defines the
parameters to be passed to the action.

ACT_Program - Program Action

 A program action allows running a console or windows
application. The calling specification for the program to
be executed can be defined in an ADKA_Program re-
source.

ACT_Menu - Menu Action

 A menu action creates a popup menu in a GUI environ-
ment, i.e. menu actions cannot be called in console ap-
plications. Menus have to be defined in an ADK_Menu
resource. The menu actions can be described in an
ADK_MenAction

ACT_Window - Window Action

 A Window action allows opening a new window (dia-
logue or form). The window action requires a GUI envi-
ronment. Window actions can be defined in an AD-
KA_Windows resource object.

 - 37 -

BNFData - BNF data element

 A BNF data element contains the data for a given sym-
bol in an BNF expression. BNF data elements form a
hierarchie down to symbols, which have been defined as
relevant symbols.

BNFData - Constructor

i0

 BNFData :: BNFData (BNFSymbol *bsymbol,

char *string, int32 string_len)

bsymbol BNF Symbol

 Pointer to a BNF symbol.

string String area

 Pointer to the 0-terminated string area.

string_len String length

 The string length defines the maximum number of char-
acters that can be stored in the string area without
counting the terminating 0. Usually this value is 1 less
that the allocated string area.

i01

 BNFData :: BNFData (BNFData *bparent

)i02

 BNFData :: BNFData (const BNFData

&bdata_ref)CreateParser - Create ad-hoc
parser

- 38 -

 The function create an ad-hoc parser for the BNF de-
scribed by the BNFData tree. The BNFData tree can be
constructed from a BNF definition file or string using the
BNF meta parser (BNFDefinition).

The function returns a pointer to the parser, which allows
analysing syntax aexpressions according to the defined
BNF.

Since the function is optimizing the priority for the parser
symbols, one may list the priority list for the symbols,
beginning with the symbol of highest priority. When sub-
parsers are referenced, the symbols for sub-parsers are
listed as well. Symbols with higher priority are analized
before symbols of lower priority. This solves some of
ambiguity problems, which result from the fact, that the
same symbol can be used as starting symbol in different
production rules.

BNFParser *BNFData :: CreateParser (BNFParser *bs_parent, logi-

cal list_symbols, char *trace_path)

bs_parent Parent parser

 This is a pointer to the parent BNFParser object.

list_symbols List symbols

 When this option is set to YES, the list of symbols is
listed on console.

trace_path Trace file location

 The location point to a file that contains all attempts for
locating symbols in an expression. It records the symbol
names and the symbol data.

GenerateSource - Generate source file for a parser

 The function generates a source file that creates a par-
ser for the BNF described by the BNFData tree. The
BNFData tree can be constructed from a BNF definition
file or string using the BNF meta parser (BNFDefinition).

logical BNFData :: GenerateSource (char *cpath)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

cpath Complete path

 - 39 -

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

GetElement - Get Element

 The function searches for an element in the BNFData
tree. When terminating successfullly it retuns the
BNFData object for the node foung, otherwise NULL.

i00 - Serch children by index

 The function returnd the child of the BNFData node at
position indx0. The first child has position 0.

BNFData *BNFData :: GetElement (int index0)i01 - Search node
by name

 The function searches for the nearest BNFData node
using a symbol name. When no node with the symbol
name passed was faond in the list of children the func-
tion searches recursively on all lower levels.

BNFData *BNFData :: GetElement (char *symbol)GetSymbol -
Looks for expression a given symbol (recursive)

 The function returns the expression for the symbol when
the sub-expression defined in the BNFData object corre-
sponds to a symbol with the name passed in 'symbol' or
not. The function searches recursively in subordinated
symbols. Searchung stops, when a sub-expression has
more than one elemenmt.

BNFData *BNFData :: GetSymbol (char *symbol)GetValue - Pro-
vides the element value as string

 The function returns the element value as string, when
the element contains data. Otherwise the function re-
turns NULL.

char *BNFData :: GetValue (char *string, int32 maxlen)

string String area

 Pointer to the 0-terminated string area.

maxlen Size of output buffer

- 40 -

 Specifies the length of the buffer, the information should
be stored into. The information is truncated if it is longer
than the buffer.

GetValueLength - Get value length

 The function returns the value length for the data area of
the symbol.

int32 BNFData :: GetValueLength ()

Return value

HasData - Has node data

 The function returns, whether a BNFData node contains
data or not.

logical BNFData :: HasData ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsA - Is expression a given symbol

 The function returns, whether the sub-expression de-
fined in the BNFData object exactly corresponds to a
symbol with the name passed in 'symbol' or not.

logical BNFData :: IsA (char *symbol)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsValue - Has expressio a given value

 The function returns, whether the sub-expression de-
fined in the BNFData object has the value passed in
'string' or not.

logical BNFData :: IsValue (char *string)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

Position - Current position in string

char *BNFData :: Position ()

 - 41 -

Return value Pointer to the 0-terminated string area.

Print - Print syntax tree

 The function will print the syntax tree to console.

i0

logical BNFData :: Print (logical recursive)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

recursive

i01

logical BNFData :: Print (char *path, logical recursive)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

path

recursive

i02

logical BNFData :: Print (FILE *fileptr, logical recursive, log-

ical erropt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

recursive

- 42 -

BNFExpression - BNF expression

 A BNF expression defines a BNF symbol. A BNF Sym-
bol might be defined by more than one expression. A
BNF expression may consist of one or more BNF ele-
ments with a defined order.

AddElement - Add element to expression.

int32 BNFExpression :: AddElement (BNFSymbol *bsymbol, logical

is_optional, int32 rep_count, logical

case_opt, logical sep_opt)

Return value The validation code has the following values:

 0 - matches symbol exactly

 1 - matches symbol but contains additional spaces

 2 - matches symbol including separating space, but
contains more information

 3 - matches symbol but contains further data without
separating blank

 4 - does not match symbol

bsymbol BNF Symbol

 Pointer to a BNF symbol.

is_optional Is value optional

 YES (or true) for this value indicates, that the item is op-
tional.

rep_count Repetition count

 Number of repetitions for the item.

case_opt Case sensitive

 The option indicates case sensitive data in text (YES)

sep_opt Separator option

 When this option is set to YES (true) a separator will be
inserted between two items.

Analyze - Analyse expression

int32 BNFExpression :: Analyze (BNFExpression **bexpressions,

BNFData *bdata, int index0, logical case_opt)

 - 43 -

Return value The validation code has the following values:

 0 - matches symbol exactly

 1 - matches symbol but contains additional spaces

 2 - matches symbol including separating space, but
contains more information

 3 - matches symbol but contains further data without
separating blank

 4 - does not match symbol

bexpressions

case_opt Case sensitive

 The option indicates case sensitive data in text (YES)

NextExpressions -

int16 BNFExpression :: NextExpressions (BNFSymbol

*target_symbol, BNFExpression **bexpressions,

BNFData *bdata, int index0, logical case_opt)

Return value

bexpressions

case_opt Case sensitive

 The option indicates case sensitive data in text (YES)

- 44 -

BNFParser - Parser for BNF strings

 A string according to a given BNF syntax is based on a
(top) BNF symbol. You may derive a specific BNF
parsers for each type of BNF you want to support. The
BNF is defined in the constructor for the BNF parser.
Any number of spaces is allowed between symbols in a
BNF but not required. Spaces are usually considered as
separators between symbols.

BNF parsers can be referenced as symbols in other BNF
symbols. This allows defining common BNF symbols
e.g. for name and number (as BNFStandardSymbold).
You may create a hierarchy consisting of a BNF tree by
passing the parent (the more complex definition) to the
referenced BNF or by constructing objects for referenced
BNF parsers.

Analyze - Analyse string

 The function analyses the string and creates a hierarchy
of BNF data elements. Each BNF data element refers to
the string, that describes the data element and to the
symbol or token defined for the data element.

The function will parse the string according to the syntax
defined in the BNF (top-aymbol) or according to a given
symbol of the syntax.

i00 - Analyse expression

 The function analyses the passed string as an expres-
sion of the syntax as being defined in the BNF (top-
symbol).

BNFData *BNFParser :: Analyze (char *string, logical skip_sep)

string String area

 Pointer to the 0-terminated string area.

skip_sep Skip separators

 The option indicates that separators (blanks, tabs and
new line characters) at the beginning of the expression
should be ignored.

Default: YES

 - 45 -

i01 - Analyze symbol

 The function analyses a substring of an expression ac-
cording to the syntax defined for the symbol passed to
the function.

BNFData *BNFParser :: Analyze (char *string, char *symbol, logi-

cal skip_sep)

string String area

 Pointer to the 0-terminated string area.

skip_sep Skip separators

 The option indicates that separators (blanks, tabs and
new line characters) at the beginning of the expression
should be ignored.

Default: YES

AnalyzeFile - Analyse BNF definition provided in a file

 The function analyses BNF definitions provided in the file
passed to the function (path) and creates a hierarchy of
BNF data elements. Each BNF data element refers to
the string, that describes the data element and to the
symbol or token defined for the data element.

i00

BNFData *BNFParser :: AnalyzeFile (char *path, logical skip_sep

)

path

skip_sep Skip separators

 The option indicates that separators (blanks, tabs and
new line characters) at the beginning of the expression
should be ignored.

Default: YES

i01

BNFData *BNFParser :: AnalyzeFile (char *path, char *symbol,

logical skip_sep)

path

skip_sep Skip separators

- 46 -

 The option indicates that separators (blanks, tabs and
new line characters) at the beginning of the expression
should be ignored.

Default: YES

BNFParser - Constructor

 The constructor allows constructing a top-parser as well
as a referenced parser. When constructing a referenced
parser, you must pass the poiter to the top parser as
'bs_parent'.

 BNFParser :: BNFParser (char *names,

BNFParser *bs_parent, logical skip_new_line,

logical term_opt, char *trace_path)

names

bs_parent Parent parser

 This is a pointer to the parent BNFParser object.

skip_new_line New line as separator

 This option is set to true (YES), when new line charac-
ters (10,13) should be considered as separators (like
blank and tab). In this case new line characters should
not be used as BNF symbols.

Default: YES

term_opt Terminate symbol

 This option indicates, thet the symbol is a terminal sym-
bol, i.e. subordinated noodes need not to be displayed in
the syntax tree.

trace_path Trace file location

 The location point to a file that contains all attempts for
locating symbols in an expression. It records the symbol
names and the symbol data.

GetLastError - Return last parser error

 The function returns an error string for the last parser
error. This information is overwritten when calling the
Analyse function for the nect expression.

The function returns NULL, when no error has been set.

char *BNFParser :: GetLastError ()

 - 47 -

Return value Pointer to the 0-terminated string area.

IsValidString - Checks, whether the symbol passed is valid

logical BNFParser :: IsValidString (char *symbol_name, char

*string, int32 string_len)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

string_len String length

 The string length defines the maximum number of char-
acters that can be stored in the string area without
counting the terminating 0. Usually this value is 1 less
that the allocated string area.

ListSymbols - List symbols for the parser

 The function allows listing the symbols defined for a par-
ser including symbols referenced from external parsers.

logical BNFParser :: ListSymbols ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ResetLastError - Reset last parser Error

 The function resets the last parser error after it has been
displayed or analysed.

void BNFParser :: ResetLastError ()~BNFParser - Destructor

 BNFParser :: ~BNFParser ()

- 48 -

BNFSymbol - BNF symbol

 A BNF symbol is a variable in a BNF specification, which
is defined by one or more BNF expressions. Symbols do
have a neme and may consist of one or more expres-
sions. Terminal symbols are tokens with a fixed value,
which is stored in the name. Terminal symbols do not
habe expressions.

BNFSymbol - Konstruktor

i0

 BNFSymbol :: BNFSymbol (BNFParser

*bparser, char *names, logical term_opt)

names

term_opt Terminate symbol

 This option indicates, thet the symbol is a terminal sym-
bol, i.e. subordinated noodes need not to be displayed in
the syntax tree.

i01

 BNFSymbol :: BNFSymbol (

)ElementaryToken - Provide symbol for el-
ementary token

 The function provides the standard symbol for single
characters (elementary tokens.

BNFSymbol *BNFSymbol :: ElementaryToken (uint8 ctoken, logical

case_opt)

Return value Pointer to a BNF symbol.

ctoken Elementary token

 Elementary tokens are single characters fro 0-255.
Symbols for elementary tokens are generated automati-
cally.

case_opt Case sensitive

 The option indicates case sensitive data in text (YES)

 - 49 -

SetTerminal - Mark symbol as terminal symbol

 Symbols marked as terminal symbols will not keep chil-
dren symbols for analysing. Typically, keywords, which
have a child for each character, are marked as terminal
symbols.

void BNFSymbol :: SetTerminal ()~BNFSymbol - Destruktor

 BNFSymbol :: ~BNFSymbol ()

- 50 -

CTX_Base - General Context Class

 The general context class is a base class for all data-
base or GUI context classes. A context usually defines a
data element or a data collection in its specific context,
e.g. children in the context of a person or in a list in a
GUI application. In a context the behaviour of object be-
comes more specific, which can be expressed in a con-
text class. Context classes have to be defined in a speci-
fied form according to the type of context to be imple-
mented.

Contexts in an application form a hierarchy, i.e. each
context object has either a parent (upper) context or is a
top context (e.g. database or project context).

Each context has two status properties which reflect the
current state of the context. Since context classes area
created and deleted by the system the current state of a
context class (as opened or closed) is not always clear
for the application programmer. The process state (->
CTX_ProcessState) describes the the current state in
the processing. The display state (-> CTX_DisplayState)
describes the visibility of the context. For GUI context
classes this is the way the associated GUI element is
presented at the moment on the user interface. State
properties are maintained by the system but can be re-
trieved by the application.

Moreover, the context class provides three user states
that can be updated and retrieved by the application.

Context classes signal several events that are relevent
for the specific context. Thus, context classes are typi-
cally used for handling system events as delete or in-
serted for database instances or lose/get focus for GUI
contexts. The enumeration of events supported by a
context class is defined in the cpecific context class im-
plementation.

The context class supports the action interface, which
enables functions in context classes calling actions de-
fined in a reasource database or created internally.

 - 51 -

CTX_Base - Konstructor

 The constructor for a general context class should never
be called explicitly, but only by a specialized class.

 CTX_Base :: CTX_Base (

)CheckPermission - Check Permission

 The function checks whether the user/application has
permission for running the action passed to the function.
The function returns true (YES) when the application has
permissions for calling the action.

Permissions are defined in the project or database con-
text and must be initialized when permission check is to
be supported.

logical CTX_Base :: CheckPermission (UCA_Action *actptr)

Return value When this value is true the function will continue, other-
wise the processing terminates.

actptr Action pointer

 The pointer refers to an internal action that has been
implicitely defined or created from a resource.

Close - Close Handler

 The function is called when the context is going to be
closed. The handler can be overloaded in the specific
context to perform necessary actions before deleting the
context. In this phase all resources of the context are still
accessible.

logical CTX_Base :: Close ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CreateAction - Create action from action resource

 The function allows creating simple actions from a re-
source action definition.

UCA_Action *CTX_Base :: CreateAction (SimpleAction *action)

Return value The pointer refers to an internal action that has been
implicitely defined or created from a resource.

- 52 -

action Simple Action

 The simple action defines the context action and the ac-
tion type. Some action types require more detailled ac-
tion definitions that will be retrieved in the dictionary. In
this case the dictionary must contain an appropriate ac-
tion definition.

CreateCAction - Create complex action

 The function creates a complex action including pre and
post handler for the action.

UCA_CAction *CTX_Base :: CreateCAction (SimpleAction

*prehandler, SimpleAction *action, SimpleAc-

tion *postandler)

Return value A complex action defines an internal action including
pre- and post-handler.

prehandler Pre-handler

 The pre-handler is passed as simple action containing
the action name and the action type.

action Simple Action

 The simple action defines the context action and the ac-
tion type. Some action types require more detailled ac-
tion definitions that will be retrieved in the dictionary. In
this case the dictionary must contain an appropriate ac-
tion definition.

postandler Post-handler

 The post-handler is passed as simple action containing
the action name and the action type.

DataState - Get data state

 The function returns the current data state for the con-
text.

CTX_DataStates CTX_Base :: DataState ()

Return value

 - 53 -

DeleteData - Delete data handler

 The delete data handler is called before deleting a data
element. The handler can be overloaded in specialized
context class implementations.

The delete handler can deny the data deletion by return-
ing YES.

logical CTX_Base :: DeleteData ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DisplayDecision - Display decision

 The function displays a decision according to the envi-
ronment (message box for windows applications and
command line decision for console applications). The
message text is defined in the message number that
refers to a defined message in the resource database.
When passing no message number or 0 the message is
constructed from the parameters passed to the function.

The possible decisions can be defined by means of pre-
defined reply combinations. One of the replys can be
defined as default reply. The selected reply is returned to
the upplication that waits until the user has been replied.

ReplyTypes CTX_Base :: DisplayDecision (int16 msgnum, ReplyCombi

buttons, ReplyTypes def_dec, char *parm1, char

*parm2, char *parm3)

Return value The decision is returned as reply type that is associated
with the given reply.

msgnum

buttons Decision combinations

 The decision allows different combinations to be dis-
played in the decision, which ere described as "Reply
Combinations".

def_dec Default reply

 One of the replys displayed in the decision can be set as
default reply.

parm1

- 54 -

parm2

parm3

DisplayMessage - Display message

 The function allows displaying a message for a signaled
or passed message code. Depending on the environ-
ment the error is written to the console (console applica-
tions) or displayed in a message box (GUI application).

void CTX_Base :: DisplayMessage (int16 w_msgnum, char *parm1,

char *parm2, char *parm3)

w_msgnum Message code

 The message code passed must be a defined error code
in the reesource database.

parm1

parm2

parm3

DisplayState - Get display state

 The function returns the current display state for the con-
text.

CTX_DisplayState CTX_Base :: DisplayState ()

Return value

ExecuteAction - Execute action

 The function allows executing an action with the action
name and type passed to the function or an event. The
function returns whether the action could be exuted
faormally. The action result can be retrieved with the
function GetActionResult().

FNCACTE_ - Execute action by name

 The function calls an action by passing the action type
and the action name. In some cases actions require an
action resource that provides more information
(Wiondow or document action). When calling more com-
plex actions the action must be defined in an action re-
source, which is available in the resource database.

 - 55 -

logical CTX_Base :: ExecuteAction (char *acnames, ActionType ac-

type)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

actype

i1 - Execute event action

 The function calls passes an event which calls the asso-
ciated event handler for the context. Since internal
events define typical events not all events are supported
for all context types. Hence, events passed to the func-
tion must be checked for the specific context type.

logical CTX_Base :: ExecuteAction (InternalEvent eventid)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

eventid Event identifier

 The event identifier is an internal number that is defined
for typical events.

ExecuteFunction - Execute function

 The function calls a context function that has been de-
fined as action (function action).

FNCEXE - Context action function interface

 This function must be overloaded in the specific context
class, as soon as the context class defined action func-
tions which can be triggered by events. Usually, this
function is generated by the development environment.
The example below shows a typical implementation.

logical CTX_Base :: ExecuteFunction (char *fname, logical

chk_opt)

- 56 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

fname

i1 - OQL function interface

 This function interface must be implemented to enable
context functions for being called in OQL functions.

logical CTX_Base :: ExecuteFunction (char *fname, int16 parmcnt,

PropertyHandle **parmlist, PropertyHandle

&retfld)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

fname

parmcnt Number of parameters

 The number of parameters must correspond to the num-
bers of parameters in the subsequent parameter list.

parmlist

retfld Return value

 The return value area is passed as property handle.

ExecuteProgram - Execute program

 The function calls a windows or console program or
batch file as passed in the program path. The control is
returned to the application as soon as the program has
been started.

logical CTX_Base :: ExecuteProgram (char *prgnams, char

*pgmparm1, char *pgmparm2, char *pgmparm3,

char *pgmparm4, char *pgmparm5)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prgnams Program path

 - 57 -

 The complete path for the program to be called is
passed as 0-terminated string.

pgmparm1

pgmparm2

pgmparm3

pgmparm4

pgmparm5

FillData - Fill data handler

 The fill data handler is called when a data instance or
GUI element has been filled with data. The handler can
be overloaded in specialized context class implementa-
tions.

logical CTX_Base :: FillData ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

GetActionResult - Get last action result

 The last action result is stored in an internal field which
allows context functions or complex actions reacting on
the result returned from the action. Some return values
are interpreted when executing complex actions as fol-
lows:

YES: action terminated with error

NO: Action terminated normally

AUTO: action not executed because pre-handler termi-
nated with error.

int32 CTX_Base :: GetActionResult ()

Return value

GetContextType - Get context type

 The function returns the context type for the current con-
text class as e.g. CTX_Property or CTX_Windoww.

CTX_Types CTX_Base :: GetContextType ()

- 58 -

Return value The context type for the context class describes the ap-
plication resource reflected by the context.

Default: CTXT_undefined

GetDecision - Get decision

 The function creates an message from the mesage
number and the passed variables and generates a deci-
sion that is displayed on the console for console applica-
tions or in a message box for GUI applications. The
function retruns true (YES), when the response was 's'
or 'S' (for si), 'o' or 'O' (for oui), 'y' or 'Y' (for yes) or 'j' or
'J' (for ja) or when the YES/OK button has been pressed
and false (NO) otherwise.

logical CTX_Base :: GetDecision (int16 msgnum, char *parm1, char

*parm2, char *parm3)

Return value

msgnum

parm1

parm2

parm3

GetMessageString - Get message string

 The function creates a message string for the passed
message number. Parameters for replacing message
variables defined in the message resource can be
passed to the function.

char *CTX_Base :: GetMessageString (int16 msgnum, char *parm1,

char *parm2, char *parm3)

msgnum

parm1

parm2

parm3

 - 59 -

GetPropertyHandle - Get Property handle

 The function returns the property handle associated with
the data for the context. The function cannot be called
for project, application, database or database object con-
text, since the data associated with those context cannot
be described by means of a property handle.

When a property name is passed to the function the
subordinated property handle for the context property
handle is returned. The name passed to the function
must be a valid property name in the structure/class de-
fined for the context property.

PropertyHandle *CTX_Base :: GetPropertyHandle (char *fldname_w)

Return value

fldname_w Property name or path

 The property name is passed as 0-terminated string.

Default: ""

GetResourceName - Get resource name

 The function returns the context specific resource name.

char *CTX_Base :: GetResourceName ()

Return value

HighContext - Get parent context

 The function returns the next upper context with the con-
text type and/or resource name passed to the function.

FNCHIGHG - Get upper context with defined type

 The function looks for the next higher context with the
context type passed to the function. When no context
type is passed (CTX_undefined) the function returns the
next higher context.

CTX_Base *CTX_Base :: HighContext (CTX_Types ctxtype)

Return value

ctxtype Context type

- 60 -

 The context type for the context class describes the ap-
plication resource reflected by the context.

Default: CTXT_undefined

i1 - Get upper resource context

 The function searches for the next higher context with a
given resource name and (when passing a defined con-
text type) the context type passed to the function.

CTX_Base *CTX_Base :: HighContext (char *resname, CTX_Types

ctxtype)

Return value

resname Resource name

 The resource name is passed as 0-terminated string with
a maximum length of 40 characters.

ctxtype Context type

 The context type for the context class describes the ap-
plication resource reflected by the context.

Default: CTXT_undefined

InitData - Init data handler

 The init data handler is called when a data instance or
GUI element has been initialized. The handler can be
overloaded in specialized context class implementations.

logical CTX_Base :: InitData ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

InsertData - Insert data handler

 The insert data handler is called before inserting a data
element. The handler can be overloaded in specialized
context class implementations.

The insert data handler can deny the data insertion by
returning YES.

logical CTX_Base :: InsertData ()

 - 61 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

IsEdit - Can data be updated

 The function checks whether data can be updated in the
given context.

logical CTX_Base :: IsEdit ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

NextData - Next data handler

 The next data handler is called when the next data in-
stance or GUI element has been located. The handler
can return an error (YES) to force the system providing
the next instance. Thus, the next handler allows imple-
menting data filters in a given context.

The handler can be overloaded in specialized context
class implementations.

logical CTX_Base :: NextData ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Open - Open context

 The function is called when the context has been
opened. The handler can be overloaded in the specific
context to perform necessary actions after opening the
context. In this phase all resources of the context are
already accessible.

logical CTX_Base :: Open ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 62 -

Parm - Provides parameter

 When calling context actions parameter cannot be
passed directly. The application must use the SetParm
function to pass parameters to the context action. Pa-
rameters that have been set with the SetParm function
can be retrieved with the Parm() function as keyword or
position parameters.

After retrieving a parameter value it can be used until the
next parameter is retrieved. Copy the parameter value
when it is still needed. Do not refer by pointer to several
parameters at the same time.

i00

char *CTX_Base :: Parm (int32 parm_no)

Return value The parameter string is passed as 0-terminated string
and contains the parameters according to the conven-
tions of the action called.

i01

char *CTX_Base :: Parm (char *parm_key)

Return value The parameter string is passed as 0-terminated string
and contains the parameters according to the conven-
tions of the action called.

parm_key Parameter keyword

 The keyword that is searched in the parameter list. The
keyword is passed as 0-terminated string. Parameter
keywords are not case sensitive.

PreviousData - Previous data handler

 The previous data handler is called when the previous
data instance or GUI element has been located. The
handler can return an error (YES) to force the system
providing anoter previous instance. Thus, the previous
handler allows implementing data filters in a given con-
text.

The handler can be overloaded in specialized context
class implementations.

logical CTX_Base :: PreviousData ()

 - 63 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ProcessState - Get process state

 The function returns the current process state for the
context.

CTX_ProcessState CTX_Base :: ProcessState ()

Return value

ResetData - Reset data handler

 The reset data handler is called when a data instance or
GUI element has been reset. The handler can be over-
loaded in specialized context class implementations.

logical CTX_Base :: ResetData ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

SaveData - Save data handler

 The save data handler is called when a data instance or
GUI element has been saved. The handler can be over-
loaded in specialized context class implementations.

logical CTX_Base :: SaveData ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

SelectData - Select data handler

 The select data handler is called when a data instance
or GUI element has been selected. The handler can be
overloaded in specialized context class implementations.

logical CTX_Base :: SelectData ()

- 64 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

SetActionResult - Set action result

 The function must be called from context handlers or
action functions to set the return value for the action in
the context. This retrun value can be retrieved by other
context functions until the nect action call.

Valid values for the return code are

0 or NO - action terminated normally

1 or YES - action terminated with error

void CTX_Base :: SetActionResult (int32 rc)

rc

SetDataState - Set data state

 Usually the data state is maintained by the system. Con-
text functions, however, may set data states to inform
the system e.g. that data has become invalid.

The function returns the previuos data state.

CTX_DataStates CTX_Base :: SetDataState (CTX_DataStates datstate

)

Return value

datstate

SetDisplayState - Set display state

 Usually the display state is maintained by the system.
Context functions, however, may set display states e.g.
to request data or GUI elements to be hidden further on.

The function returns the previuos display state.

CTX_DisplayState CTX_Base :: SetDisplayState (CTX_DisplayState

dspstate)

Return value The data state is set to DSP_disabled, when the context
is set to read only.

dspstate Data state

 - 65 -

 The data state is set to DSP_disabled, when the context
is set to read only.

SetParm - Set Parameters for context action

 When calling context actions parameter cannot be
passed directly. The application must use the SetParm()
function to pass parameters to the context action. This
function is usually called internally from the Exe-
cuteAction function for different handles.

logical CTX_Base :: SetParm (char *parm1, char *parm2, char

*parm3, char *parm4, char *parm5)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

parm1

parm2

parm3

parm4

parm5

SetUserState1 - Set first user state

 The function set the new value for the user state and
returns the previous user state.

int16 CTX_Base :: SetUserState1 (int16 userstat)

Return value The user state is true (YES) or false (NO).

userstat User state

 The user state is true (YES) or false (NO).

SetUserState2 - Set second user state

 The function set the new value for the user state and
returns the previous user state.

int16 CTX_Base :: SetUserState2 (int16 userstat)

Return value The user state is true (YES) or false (NO).

userstat User state

 The user state is true (YES) or false (NO).

- 66 -

SetUserState3 - Set third user state

 The function set the new value for the user state and
returns the previous user state.

int16 CTX_Base :: SetUserState3 (int16 userstat)

Return value The user state is true (YES) or false (NO).

userstat User state

 The user state is true (YES) or false (NO).

SetupParm - Setup parameter list options

 The function allows settting up the parameter list by de-
fining separator and parameter list type. The default val-
ues are ',' as seperator and no keyword parms. When
another type of parameter list should be used for pass-
ing parameters to context actions of the given context it
is suggested to setup the parameter list when opening
the context (DBOpened).

logical CTX_Base :: SetupParm (char separator, logical key_parms

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

key_parms Parmlist with key parameter format

 This option is set to YES (true) when the parameter list
contains key word parameters. If no (position parame-
ters) the option is set to NO (false).

StoreData - Store data handler

 The store data handler is called when a data instance or
GUI element has been saved. The handler can be over-
loaded in specialized context class implementations.

logical CTX_Base :: StoreData ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 67 -

UserState1 - Get first user state

 The function returns the current user state.

int16 CTX_Base :: UserState1 ()

Return value

UserState2 - Get second user state

 The function returns the current user state.

int16 CTX_Base :: UserState2 ()

Return value

UserState3 - Get third user state

 The function returns the current user state.

int16 CTX_Base :: UserState3 ()

Return value

- 68 -

CTX_DBBase - Base class for data base contexts

 The base class for database contexts provides some
basic functionality for data base context classes. In par-
ticular the class provides most of the default event han-
dlers that can be overloaded in specific context classes.
Overloaded handlers need not to call the default han-
dlers since nothing is done in the default handlers. Han-
dlers for database events are usually called within inter-
nal transactions. Thus, all modifications made by the
event handler are reset when the transaction fails.

For a number of database operations Not-events are
generated that are called in case of an error. An error
could be a database (consistency) error but the process
event (before event) could have denied the operation as
well.

CheckPermission - Check permission

 The function checks whether the user/application has
permission for running the action passed to the function.
The function returns true (YES) when the application has
permissions for calling the action.

Permissions are defined in the project or database con-
text and must be initialized when permission check is to
be supported.

logical CTX_DBBase :: CheckPermission (UCA_Action *actptr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

actptr Action pointer

 The pointer refers to an internal action that has been
implicitely defined or created from a resource.

 - 69 -

DBBeforeRead - Before read event handler

 The before read event handler is called before reading
an instance (DBP_Read event).

At the time, when the handler is called, the instance is
already selected in the property handle. Key data for the
sort key (when defined) is available and can be copied to
the instance area using the SetKey() structure context
function or can be provided by using the GetKey() con-
text function.

The handler can be used to optimize read access by
returning YES or marking an instance as 'hidden'
(HideInstance()), when an instance with the given key
should not be provided.

The handler can be overloaded in specialized structure
context class (CTX_Structure) implementations.

logical CTX_DBBase :: DBBeforeRead ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBClose - Close event

 The function reacts on the DBO_Close event, i.e. it is
called when the context is going to be closed. In this
phase all resources of the context are still accessible.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBClose ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 70 -

DBCreate - Before create handler

 The before create handler is called before creating a
new data instance (DBP_Create event).

The before create handler can deny creating the data
instance by returning YES.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBCreate ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBCreated - After create handler

 The after create handler is called when a data instance
has been cretaed. (DBO_Created event). The handler
can be overloaded in specialized context class imple-
mentations.

logical CTX_DBBase :: DBCreated ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBDelete - Before delete handler

 The before delete handler is called before deleting a da-
ta instance (DBP_Delete event).

The before delete handler can deny deleting the data
instance by returning YES.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBDelete ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 71 -

DBDeleted - After delete handler

 The after delete handler is called when a data instance
has been deleted. (DBO_Deleted event). The handler
can be overloaded in specialized context class imple-
mentations.

logical CTX_DBBase :: DBDeleted ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBInitialize - Initialize handler

 The initialize handler is called when a data instance has
been initializes (DBO_Initialized event). When the han-
dler is called the instance is not yet selected in the prop-
erty handle. Hence, only attributes can be accessed in
the instance in this phase. References and relationships
are not accessable.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBInitialize ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBInsert - Before insert handler

 The before insert handler is called before insering a data
instance in a collection (DBP_Insert event). When the
handler is called the instance to be inserted in the collec-
tion is not yet selected in the property handle. Hence,
only attributes can be accessed in the instance in this
phase. References and relationships are not accessable.

The before insert handler can deny creating the data
instance by returning YES.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBInsert ()

- 72 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBInserted - After inserted handler

 The after inserted handler is called when a data instance
has been inserted in a collection (DBO_Inserted event).
In contrast to create insert means only that an instance
has been added to a collection but it need not to be a
newly created instance.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBInserted ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBModify - Modify handler

 The modify handler is called when a modification is sig-
naled for the instance (DBP_Modify event). This may
happen before or after performing the modification. new
data instance.

The before create handler can deny creating the data
instance by returning YES.

The handler can be overloaded in specialized context
class implementations. When handling the modify event
no values should be assigned to the instance of the
property handle since this will cause another modifica-
tion event and thus, a recursive call of the event handler.
You can prevent recursion by setting a user state and
checking it always when entering the modify event han-
dler. The state should be reset at least in the stored
handler to handle new modify events.

logical CTX_DBBase :: DBModify ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 73 -

DBNotCreated - Not created handler

 The not created handler is called when a data instance
could not be cretaed because of an error
(DBO_NotCreated event). The handler can be overload-
ed in specialized context class implementations.

logical CTX_DBBase :: DBNotCreated ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBNotDeleted - Not deleted handler

 The not deleted handler is called when a data instance
could not be deleted because of an error
(DBO_NotDeleted event). The handler can be overload-
ed in specialized context class implementations.

logical CTX_DBBase :: DBNotDeleted ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBNotInserted - Not inserted handler

 The not inserted handler is called when a data instance
could not be inserted because of an error
(DBO_NotInserted event). The handler can be overload-
ed in specialized context class implementations.

logical CTX_DBBase :: DBNotInserted ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBNotOpened - Not opened handler

 The not opened handler is called when the context could
not be oened because of an error (DBO_NotOpened
event). The handler can be overloaded in specialized
context class implementations.

logical CTX_DBBase :: DBNotOpened ()

- 74 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBNotRemoved - Not removed handler

 The not removed handler is called when a data instance
could not be removed from a collection because of an
error (DBO_NotRemoved event). The handler can be
overloaded in specialized context class implementations.

logical CTX_DBBase :: DBNotRemoved ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBOpen - Before open handler

 The before open handler is called when opening the
context (DBP_Open event).

The before delete handler can deny opening the context
by returning YES. In this case the cantext has the pro-
cess state PRC_NotOpened.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBOpen ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBOpened - After Open handler

 The function is called when the context has been
opened (DBOpened event). The handler can be over-
loaded in the specific context to perform necessary ac-
tions after opening the context. In this phase all re-
sources of the context are already accessible.

logical CTX_DBBase :: DBOpened ()

 - 75 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBRead - After read event

 The after delete handler is called when a data instance
has been deleted. (DBO_Read event). This handler is
typically used to initialize transient attributes and refer-
ences in the instance or to select propert settings for
generic attributes.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBRead ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBRefresh - Refresh handler

 The refresh handler is signaled by the application when
submitting a refresh request to a property handle
(DBO_Refresh event). This handler is typically used to
initialize transient attributes and references for the prop-
erty handle or to re-calculate derived values.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBRefresh ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 76 -

DBRemove - Before remove handler

 The before remove handler is called before removing a
data instance from a collection (DBP_Remove event).

The before insert handler can deny creating the data
instance by returning YES.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBRemove ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBRemoved - After remove handler

 The after remove handler is called when a data instance
has been removed from a collection (DBO_Removed
event). In contrast to delete remove means only that an
instance has been removed from a collection but not
necessarily deleted as instance. When the handler is
called the instance removed from the collection is not
anymore selected in the property handle and thus, not
accessible.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBRemoved ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 77 -

DBStore - Before stor handler

 The before store handler is called before storing data to
the transaction or database (DBP_Store event). The
event handler is typically used to perform application
consistency checks for the instance. Since in this phase
all indices have already been updated and consistency
checks have been finished key components must not be
updated. When changing sub-ordinated instances in this
handler the modifications should be saved explicitely.
Otherwise, they are not stored in the same transaction
and may cause problems when the transaction fails.

The before store handler can deny creating the data in-
stance by returning YES.

The handler can be overloaded in specialized context
class implementations.

logical CTX_DBBase :: DBStore ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DBStored - After strore handler

 The after store handler is called when a data instance
has been stored (DBO_Stored event). The handler can
be overloaded in specialized context class implementa-
tions.

logical CTX_DBBase :: DBStored ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ExecuteAction - Execute action

 The function allows executing an action with the action
name and type passed to the function or an event. The
function returns whether the action could be exuted
faormally. The action result can be retrieved with the
function GetActionResult().

logical CTX_DBBase :: ExecuteAction (DB_Event intevent)

- 78 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

intevent Event identifier

 The event identifier is an internal number that is defined
for typical events.

GetPropertyHandle - Get Property handle

 The function returns the property handle associated with
the data for the context. The function cannot be called
for database or database object context, since the data
associated with those context cannot be described by
means of a property handle.

When a property name is passed to the function the
subordinated property handle for the context property
handle is returned. The name passed to the function
must be a valid property name in the structure/class de-
fined for the context property.

PropertyHandle *CTX_DBBase :: GetPropertyHandle (char *fldname_w

)

Return value Is a pointer to an (usually) opened property handle.

fldname_w Property name or path

 The property name is passed as 0-terminated string.

Default: ""

GetSysDict - Get system dictionary

 The function returns the system dictionary for the data-
base opened. The system dictionary contains the model
definitions for the metadata.

DictionaryHandle &CTX_DBBase :: GetSysDict ()

Return value This is a reference to an opened dictionary handle.

HighDBContext - Get next higher database context

 The function returns the next upper context with the con-
text type and/or resource name passed to the function.

 - 79 -

i0

CTX_DBBase *CTX_DBBase :: HighDBContext (CTX_Types ctxtype)

ctxtype Context type

 The context type for the context class describes the ap-
plication resource reflected by the context.

Default: CTXT_undefined

i1

CTX_DBBase *CTX_DBBase :: HighDBContext (char *resname,

CTX_Types ctxtype)

resname Resource name

 The resource name is passed as 0-terminated string with
a maximum length of 40 characters.

ctxtype Context type

 The context type for the context class describes the ap-
plication resource reflected by the context.

Default: CTXT_undefined

SetTransactionError - Set trasaction error

 The function marks a transaction as errounus. This leads
to a rollback of the transaction when the transaction is
finished. The function can be called in post handlers (as
inserted or deleted) to undo the performed operation.

void CTX_DBBase :: SetTransactionError ()

- 80 -

CTX_DataBase - Database Context

 The database context allows defining functionality that is
executed when opening or closing a database. The da-
tabase context does not have a parent context.

The default database context can be overloaded by a
application specific database context class.

CTX_DataBase - Konstructor

 CTX_DataBase :: CTX_DataBase (

)GetDBHandle - Det database handle

 The function returns a database handle for the database.

DatabaseHandle &CTX_DataBase :: GetDBHandle ()

Return value

~CTX_DataBase - Destructor

 The function destroys the database context. The function
must be overloaded in an application specific implemen-
tation of the database context.

 CTX_DataBase :: ~CTX_DataBase ()

 - 81 -

CTX_Object - Database Object Context

 The Database Object context allows defining functionali-
ty that is executed when opening or closing a Database
Object. The parent context for an object context is an
object con-text (if the Database Object is not the root
Database Object) or the database context (for the root
Database Object).

The default database object context can be overloaded
by a application specific database context class.

~CTX_Object - Destructor

 The function destroys the database object context. The
function must be overloaded in an application specific
implementation of the database object context.

 CTX_Object :: ~CTX_Object ()

- 82 -

CTX_Property - Property contexts

 Property contexts are created for extents, references,
attributes, relationships and base structures. The proper-
ty context defines refers to the property instance as well
as to the property definition. Moreover, it allows deter-
mining the active context hierarchy for the property, i.e.
the parent structure/Database Object, the property the
parent structure is accessed from, the parent parent
structure etc. Thus, the property context defines the con-
text in which the property instance has been provided.

The parent context for a property context is a structure
context (when the property is part of an object instance)
or a Database Object context (when the property is an
extent.

The property context allows handling read and update
events, validity checks and insert and remove events.

The default property context can be overloaded by a
application specific property context classes.

DBRefresh - Refresh handler

 The refresh handler is signaled by the application when
submitting a refresh request to a property handle
(DBO_Refresh event). This handler is typically used to
initialize transient attributes and references for the prop-
erty handle or to re-calculate derived values.

The handler can be overloaded in specialized context
class implementations.

logical CTX_Property :: DBRefresh ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 83 -

GetInstContext - Get Instance context

 The function returns the structure context for the in-
stance that owns the current property (high structure).
This is not identical with the structure that owns the
property. The instance owning the property is the in-
stance that is stored in the database. Hence, the func-
tion goes up in the context hirarchy until it finds the con-
text that referst to the instance stored in the database.

CTX_Structure *CTX_Property :: GetInstContext ()

Return value Structure context for a property handle.

GetPropContext - Get Property context

 The function returns the property context for the property
passed as name or property path. The property is
searched in the structure that owns the current property.

CTX_Property *CTX_Property :: GetPropContext (char *w_fldnames)

Return value This is the default property context or a user-defined
context class instance for the property.

w_fldnames Property path or name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names. NULL is passed if no property name
is available.

GetPropertyHandle - Get Property Handle

 The function returns the property handle associated with
the data for the context. The function cannot be called
for database or database object contexts, since the data
associated with those contexts cannot be described by
means of a property handle.

When a property name is passed to the function the
subordinated property handle for the context property
handle is returned. The name passed to the function
must be a valid property name in the structure/class de-
fined for the context property.

PropertyHandle *CTX_Property :: GetPropertyHandle (char

*fldname_w)

Return value Is a pointer to an (usually) opened property handle.

fldname_w Property name or path

- 84 -

 The property name is passed as 0-terminated string.

Default: ""

GetResourceName - Get resource name

 The function returns the property name as context spe-
cific resource name.

char *CTX_Property :: GetResourceName ()

Return value The resource name is passed as 0-terminated string with
a maximum length of 40 characters.

GetStructContext - Get structure context

 The function returns the structure context for the current-
ly selected instance in the property handle. For weak-
typed properties the context may change with the selec-
tion from instance to instance. When no instance is se-
lected in the property handle associated with the context
the function returns the instance context for the default
instance.

CTX_Structure *CTX_Property :: GetStructContext (char

*w_strnames)

Return value Structure context for a property handle.

w_strnames

IsEdit - Can data be updated

 The function checks whether data can be updated in the
property handle.

logical CTX_Property :: IsEdit ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsReadOnly - Is read-only enabled

 The function returns whether the read only option has
been set in the instance.

logical CTX_Property :: IsReadOnly ()

 - 85 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

SetReadOnly - Set read only

 The function allows setting the instance selected in the
property handle to read-only. This will prevent the data in
the property handle from being updated. The indication
is reset automatically, when reading the next instance.
The function sets the read only optin for all sub-
ordinated property handles.

logical CTX_Property :: SetReadOnly (logical readonly)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

readonly

SetResult - Set value for action result

 Usually it is not possible to pass an result from a context
function. You can, however, return a string list which can
be retrieved by the application using the function GetAc-
tionResult(). The result is also passed from the server to
the client when the action is executed on a server.

void CTX_Property :: SetResult (char *result_string)

result_string Result string

 The result string can be a list of strings where strings are
usually separated by x01 characters. If there is only one
string returned the string is 0-terminated. Multiple strings
are terminated with 0 after the last string in the list, which
should be terminated with x01 as well.

SetTransactionError - Set Transaction Error

 The function marks a transaction as errounus. This leads
to a rollback of the transaction when the transaction is
finished. The function can be called in post handlers (as
inserted or deleted) to undo the performed operation.

void CTX_Property :: SetTransactionError ()

- 86 -

CTX_Structure - Structure Context

 A structure context is created for each structure type. It
defines the connection between the instance and the
instance description. Moreover, it allows determining the
active con-text hierarchy for the structure instance, i.e.
the parent property/extent, the structure the parent prop-
erty is defined in, the parent parent property etc. Thus,
the structure context defines the context in which the
object instance has been provided.

The parent context for a structure context is always a
property context. This can be the property context for an
extent or for another property within a structure instance.

The structure context allows handling read and updating
events as well as creating or deleting events.

BuildObjDescription - Create an object description

 The function provides a html or simple text description
for the object that is constructed according to a defined
template that describes the elements to be included into
the object.

logical CTX_Structure :: BuildObjDescription (PropertyHandle

&templ_pi, logical html)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

templ_pi Template property handle

 The property handle refers to the template that is used
for buildung the textual presentation of the object.

html HTML option

 Indicates whether the description (textual object
presentatin) is to be provided in HTML format (YES) or
not (NO).

CTX_Structure - Structure context constructor

 CTX_Structure :: CTX_Structure (

)CopyTo - Duplicate instance

 - 87 -

 The function duplicates an existing instance. Since spe-
cific copy rules must be implemented in several cases
an overloaded specific action can be defined in derived
context classes. The function is not a virtual function and
must be implemented as an action that can be called via
the executeFunction function

logical CTX_Structure :: CopyTo ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

GetContextType - Get Context type

 The function returns the specific context type as
CTX_Structure.

CTX_Types CTX_Structure :: GetContextType ()

Return value The context type for the context class describes the ap-
plication resource reflected by the context.

Default: CTXT_undefined

GetInstContext - Get Instance context

 The function returns the structure context for the in-
stance that owns the current property (high structure).
This is not identical with the structure that owns the
property. The instance owning the property is the in-
stance that is stored in the database. Hence, the func-
tion goes up in the context hirarchy until it finds the con-
text that referst to the instance stored in the database.

CTX_Structure *CTX_Structure :: GetInstContext ()

Return value Structure context for a property handle.

GetInstance - Get instance

 The function returns the instance for the context.

- 88 -

GetKey - Get Key value

 This function can be called when an instance is selected
in the property handle (PropertyHandle::IsSelected()) or
in the DBBeforeRead() event handler. The function re-
turns the key for the selcted instance in the internal key
structure, when the collection is ordered or an empty key
instance, when the collection is not ordered or no in-
stance is selected in the collection.

char *CTX_Structure :: GetKey ()

Return value The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StringToKey}())
function. Regardles on the type key values are passed
as (char *) areas.

GetOldField - Provide property handle for old instance

 The function returns a froperty handle for the old in-
stance (as currently stored in the database, ->
GetOldInstance()).

PropertyHandle CTX_Structure :: GetOldField ()

Return value The property handle refers to data and metadata of the
selected property.

GetOldInstance - Get old instance

 The function returns the "old instance" state as it is
stored still in the database. This allows comparing old
and new values within the DBModify() or DBStore() han-
dler.

char *CTX_Structure :: GetOldInstance ()

Return value

GetPropContext - Get Property context

 The function returns the property context for the property
passed as name or property path. The property is
searched in the structure associated with the context.

CTX_Property *CTX_Structure :: GetPropContext (char *w_fldnames

)

Return value This is the default property context or a user-defined
context class instance for the property.

 - 89 -

w_fldnames Property path or name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names. NULL is passed if no property name
is available.

GetPropertyHandle - Get Property handle

 The function returns the property handle associated for
the structure. When a property name or path is passed
to the function the property handle is searched in the
structure. When no property name or path is passed the
property handle the structure belongs to is returned.

PropertyHandle *CTX_Structure :: GetPropertyHandle (char

*fldname_w)

Return value Is a pointer to an (usually) opened property handle.

fldname_w Property name or path

 The property name is passed as 0-terminated string.

Default: ""

GetReadOnly - Is context set to read-only?

 The function returns whether the context has been set to
read-only (-> SetReadOnly()).

CTX_DisplayState CTX_Structure :: GetReadOnly ()

Return value The data state is set to DSP_disabled, when the context
is set to read only.

GetRefContext - Get referenced context

 Some functions as Copy are setting a reference context.
The reference context can be set also explicitly using the
SetRefContext() function. The function returns the refer-
ence context when it is set or NULL otherwise.

CTX_Structure *CTX_Structure :: GetRefContext ()

Return value Structure context for a property handle.

GetResourceName - Get resource name

 The function returns the structure name as context spe-
cific resource name.

- 90 -

char *CTX_Structure :: GetResourceName ()

Return value The resource name is passed as 0-terminated string with
a maximum length of 40 characters.

GetSourceField - Get source field

 Some functions as Copy are setting the property handle
for the source during the action that refers to a source
property handle. The function returns the source proper-
ty handle when it is set or an empty property handle oth-
erwise.

PropertyHandle CTX_Structure :: GetSourceField ()

Return value The property handle refers to data and metadata of the
selected property.

HideInstance - Hide instance

 The function can be used in the structure context to ex-
clude an instance from being selected in any property
handle. Hidden instances will return NO when trying to
lacate such an instance using the Get() or another func-
tion to locate the instance. Position() (or the ++ or -- op-
erator) will skip hidden instances.

The state is typically set in the DBRead() handler. When
resetting or changing the selection in the property handle
the state is automatically reset. You may, however, reset
the state explicitely using the ShowInstance() context
function.

The function returns the 'hidden' state as it was set be-
fore calling the function.

logical CTX_Structure :: HideInstance ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsEdit - Can data be updated

 The function checks whether data can be updated in the
instance selected for the property handle.

logical CTX_Structure :: IsEdit ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

 - 91 -

IsHidden - Is instance hidden

 Hidden instances are not selected when attempting to
read them. The state can be set using the structure con-
text function HideInstance() in a derived structure con-
text. The function returns YES, when the instance is hid-
den and NO otherwise.

logical CTX_Structure :: IsHidden ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsReadOnly - Has instance been set to read-only

 The function returns whether the property handle has
been set to read-only for instances (-> SetReadOnly()).

logical CTX_Structure :: IsReadOnly ()

Return value

SetKey - Set key in instance area

 This function can be called when an instance is selected
in the property handle (PropertyHandle::IsSelected()) or
in the DBBeforeRead() event handler. The function
moves the key to the property instance area for the key
components. The function returns an error (YES), when
the collection is not ordered or when no instance is se-
lected in the collection.

logical CTX_Structure :: SetKey ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 92 -

SetReadOnly - Set instance to read-only

 The function allows protecting an instance from being
updated or remove the write protection. The function can
be called from within any structure context function or in
relation with a structure context. The function will protect
the current property handle and all subsequent handles,
i.e. it works recursively. When resetting the read-only
state the function will not reset subsequent property
handles that have been set explicitly to read-only. Set-
ting the read-only state for a property handle has the
consequence that not only all subordinated instaces are
locked for writing but all subordinated collections as well,
i.e. that the application cannot add or delete instances
from subordinated property handles.

The read-only state is set for the property handle, i.e.
after setting the read only state all instances selected for
the property handle are read-only until the state is reset
by another context function call.

The function returns the current state for the property
handle.

When changing the instance state for a property handle
this will affect the write permission only, when being set
before selecting an instance in the Property handle. To
activate the state for the instance currently selected the
instance can be re-selected (e.g. using {.r PropertyHan-
dle.Reset}()). Resetting the read-only state will not affect
instances that are write protected for other reasons and
instances selected in other property handles, which have
been set explicitely to 'read only' by the application.

logical CTX_Structure :: SetReadOnly (logical readonly)

Return value

readonly

SetRefContext - Set reference context

 The function allows setting a reference context as link in
another context e.g. to link structure contexts in a copy
process. Only one context can be set as reference con-
text. Calling the function several times will overwrite the
reference context each time the function is called. When
passing NULL as reference context the reference con-
text will be reset.

 - 93 -

logical CTX_Structure :: SetRefContext (CTX_Structure *strctx)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

strctx Structure Context

 Structure context for a property handle.

SetResult - Set Result

 The function stores the result of a context function in the
result area, which can be retrieved in the application us-
ing the PropertyHandle::GetResult() function.

void CTX_Structure :: SetResult (char *result_string)

result_string Result string

 The result string can be a list of strings where strings are
usually separated by x01 characters. If there is only one
string returned the string is 0-terminated. Multiple strings
are terminated with 0 after the last string in the list, which
should be terminated with x01 as well.

SetTransactionError - Set Transaction Error

 The function marks a transaction as errounus. This leads
to a rollback of the transaction when the transaction is
finished. The function can be called in post handlers (as
inserted or deleted) to undo the performed operation.

void CTX_Structure :: SetTransactionError ()ShowInstance -
Show instannce

 The show instance function resets the hidden state for
an instance. Usually, the hidden state is reset automati-
cally, when the selection in a property handle is
changed.

The function returns the 'hidden' state as it was set be-
fore calling the function.

logical CTX_Structure :: ShowInstance ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

- 94 -

~CTX_Structure - Destructor

 The function destroys the structure context. The function
must be overloaded in an application specific implemen-
tation of the structure context.

 CTX_Structure :: ~CTX_Structure ()

 - 95 -

DBErrorHandle - Database Error Handle

 The database error handle provides extended documen-
tation for errors detected in the system. In contrast to the
basic ErrorHandle the DBErrorHandle locates signaled
errors in the system or application database and pro-
vides detailled information for the error detected.

A application specific error handle can be defined and
set for enabling application specific error handling (->
ErrorHandle).

DBErrorHandle - Constructoe

 The cnstructor creates an error handle. The ob-
ject_handle passed to the function should contain the
error descriptions in an extent as defined in the error(s)
that are handled by the error handler. For system errors
this is a database object handle for the system database
ode.sys. For application errors the resource database or
dictionary should contain the error definitions. To acti-
vate an error handler for the errors of a certain error
class you can use the Error::SetErrorHandle() function.

 DBErrorHandle :: DBErrorHandle (DBObjec-

tHandle &object_handle)

object_handle Database Object handle

 This is a pointer to an opened Database Object handle.

DisplayMessage - Display message

 The function displays a message to the console or in a
message box (when GUI-messages are activated). Dis-
playing messages can be supressed by setting the SU-
PRESS_ERRORS system variable to "YES". Besides
writing the message to the protocol file it will be dis-
played on console (for console applications). This can be
supressed by setting the system variable
NO_CONSOLE_MESSAGES to "YES".

logical DBErrorHandle :: DisplayMessage (Error *error_obj)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 96 -

error_obj

GetError - Get error text from resource database

 The function provides the error text stored in the re-
source data base passed as error_source or set as er-
ror_source in the error object. This is usually the applica-
tion resource database that contains the error defintions
in an extent with the name of the error class. The error
text will be provided according to the language set in the
error handle.

When the error is not found a message "Undefined er-
ror" containing the error variables set is created. The
function returns the error type as set in the error defin-
tion.

char DBErrorHandle :: GetError (Error *error_obj, void

*error_source)

Return value

error_obj

error_source

GetErrorHelpID - Get context help id for the error

 The function returns a context help id for the error that
can be used to call the online help for errors, that can be
created using the ODABA design tools or by any other
application. By default the error context id is the re-
source id of the error definition.

int32 DBErrorHandle :: GetErrorHelpID (Error *error_obj)

Return value

error_obj

GetObjectHandle - Get resource object handle

 The function returns the database object handle for the
error handle that has been set for error look up.

DBObjectHandle &DBErrorHandle :: GetObjectHandle ()

Return value This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

 - 97 -

SetObjectHandle - Set resource object handle

 The function sets the database object handle for the er-
ror handle that is used for error look up.

void DBErrorHandle :: SetObjectHandle (ACObject *obhandle)

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

~DBErrorHandle - Destructor

 The function destroys the error handle.

 DBErrorHandle :: ~DBErrorHandle ()

- 98 -

DBFieldDef - Definition for the internal presentation of
property data

 The internal property definition contains all information
available and necessary accessing data of the property.
Among basic information such as type and size it con-
tains special ODABA2 access information such as index
and base collection definitions.

Alls these information are used for reading and writing
data just as to execute operations on properties (see
also {.r DBField}).

DBFieldDef - Constructor

i0

 DBFieldDef :: DBFieldDef (char

*fldnames, char *fldtypes, SDB_RLEV fldreflev,

uint16 fldsize, uint16 fldprec, uint16 flddim,

smcb *smcbptr, char *gentype, logical secrefr,

char *extnames, char *irefname, DBIndex

*indexptr)

fldnames

fldtypes

fldreflev

fldsize

fldprec

flddim

smcbptr Pointer to generel structure definition

 The smcb is a more general way to define structure
(DBStructDef). It contains information for the structure
and its properties. In contrast to the DBStructDef the
smcb describes structure members regardless on the
rule they may play in the structure.

gentype Generic type of property

 Pointer to a null-terminated string containing the generic
type.

secrefr Property is secundary referenced

 - 99 -

extnames Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

irefname Name of inverse property

indexptr Index definition

 Pointer to an internal index definition.

i04

 DBFieldDef :: DBFieldDef (fmcb *fmcbptr

)

fmcbptr

i1

 DBFieldDef :: DBFieldDef ()i2

 DBFieldDef :: DBFieldDef (Dictionary

*dictptr, SDB_Reference *dbrptr, smcb

*smcbptr, DBIndex *indexptr, logical domopt,

logical logrefr, logical secrefr, logical

depopt, char *extnames, char *irefname)

dictptr Dictionary handle

 An opened dictionary handle is passed.

dbrptr ODABA2 reference definition

 Pointer to a reference definition instance, stored in an
ODABA2 data base.

smcbptr Pointer to generel structure definition

 The smcb is a more general way to define structure
(DBStructDef). It contains information for the structure
and its properties. In contrast to the DBStructDef the
smcb describes structure members regardless on the
rule they may play in the structure.

indexptr Index definition

 Pointer to an internal index definition.

domopt Property is dominant

logrefr Property is a logical reference

- 100 -

secrefr Property is secundary referenced

depopt Property data depends on property

extnames Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

irefname Name of inverse property

i3

 DBFieldDef :: DBFieldDef (SDB_Property

*dbyptr, smcb *smcbptr)

dbyptr

smcbptr Pointer to generel structure definition

 The smcb is a more general way to define structure
(DBStructDef). It contains information for the structure
and its properties. In contrast to the DBStructDef the
smcb describes structure members regardless on the
rule they may play in the structure.

GetDBStruct - Get Database structure definition

 The function returns the database structure definition for
the field. When the field is not associated with a data-
base definition or when the associated structure defini-
tion is an smcb, only, and not a database structure defi-
nition the function returns 0.

i0

DBStructDef *DBFieldDef :: GetDBStruct ()

Return value

i1

DBStructDef *DBFieldDef :: GetDBStruct (Dictionary *dictptr)

Return value

dictptr Dictionary handle

 An opened dictionary handle is passed.

 - 101 -

i2

DBStructDef *DBFieldDef :: GetDBStruct (Dictionary *dictptr,

uint8 schemaversion)

Return value

dictptr Dictionary handle

 An opened dictionary handle is passed.

schemaversion Scheme version

 Number of version for the scheme of data structure defi-
nitions.

If the number is not known, it can be retrieved from the
{.r Dictionary} via the function {.r ACOb-
ject.GetVersion}().

GetExtendName -

char *DBFieldDef :: GetExtendName ()

Return value The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

GetIndexDef -

i0

DBIndex *DBFieldDef :: GetIndexDef (int16 indx_pos)

Return value

indx_pos

i1

DBIndex *DBFieldDef :: GetIndexDef (char *keyname)

Return value

keyname Name of sort key

 The order key name must be a key name defined for the
given structure. The sort key is passed as 0-terminated
string with maximum 40 characters.

- 102 -

IsBaseCollection -

logical DBFieldDef :: IsBaseCollection (Dictionary *dictptr,

char *strnames)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

dictptr Dictionary handle

 An opened dictionary handle is passed.

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

get_clst_table - Instances of property collection are stored in a
cluster

 This characteristic is of interest for reference collections,
only.

The function returns YES, if all instances of the collec-
tion are stored in a cluster.

logical DBFieldDef :: get_clst_table ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

get_create - Property is allowed to create new instances

 This characteristic is of interest for references and rela-
tionships, only.

The function returns YES, if new instances can be cre-
ated via this property.

logical DBFieldDef :: get_create ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

get_depend - Instance(s) depends on the relationship

 This characteristic is of interest for relationships, only.

The function returns YES, if instances are deleted im-
medialety when removing from the relationship.

 - 103 -

logical DBFieldDef :: get_depend ()

Return value The value YES means that all instances referenced by
the relationship depends on the relationship and will be
deleted, when they are removed from the relationship
(see also {.r SDB_Relationship.depend}).

get_extend -

const char *DBFieldDef :: get_extend ()

Return value The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

get_gen_type -

const char *DBFieldDef :: get_gen_type ()

Return value Pointer to a null-terminated string containing the generic
type.

get_initval -

const char *DBFieldDef :: get_initval ()

Return value

get_inverse -

DBFieldDef *DBFieldDef :: get_inverse ()

Return value

get_inverse_name -

const char *DBFieldDef :: get_inverse_name ()

Return value

get_mb_number -

int16 DBFieldDef :: get_mb_number ()

Return value Mainbase numbers from 0 to 252 (for small databases)
and 0 to 32767 (for large databases) are valid.

get_multikey -

logical DBFieldDef :: get_multikey ()

- 104 -

Return value

get_owning -

logical DBFieldDef :: get_owning ()

Return value

get_privilege -

PIADEF DBFieldDef :: get_privilege ()get_static -

logical DBFieldDef :: get_static ()get_transient -

logical DBFieldDef :: get_transient ()get_update -

logical DBFieldDef :: get_update ()

Return value

get_version -

int16 DBFieldDef :: get_version ()

Return value

get_virtual -

logical DBFieldDef :: get_virtual ()

Return value

get_weak_typed -

logical DBFieldDef :: get_weak_typed ()

Return value

operator=

logical DBFieldDef :: operator= (DBFieldDef &dbfield_ref)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbfield_ref

 - 105 -

set_initval

void DBFieldDef :: set_initval (char *init_string)

init_string Initial value

 The initial value for the property is passed as 0-
terminated string.

~DBFieldDef - Destructor

 DBFieldDef :: ~DBFieldDef ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 106 -

DBObjectHandle - Database Object handle

 Database object handles are necessary for accessing
data in an database object. A database object can be
considered as a database within a database. Each data-
base has a root database object on top. Below each da-
tabase object any number of subordinated database ob-
jects can be created.

Database objects in a database are logically separated
but not physically. Thus, it becomes possible to establish
links between structure instances in different database
objects. Each database object has, however, its own
extents containing the global instances of the database
object.

The database object handle for the root database object
is part of the database handle (-> DatabaseHandle) and
need not to be opened explicitly.

A database object handle is required for opening extent
property handles for accessing structure instances
stored in extents.

The database object handle administrates transactions.
Transactions can be started and stopped for each object
handle. The database object handle is not thread save,
i.e. a database object handle must not be used simulta-
neously in different threads.

The database object supports version slices, i.e. each
database object may have its own current version.

 - 107 -

BeginTransaction - Start transaction

 When starting a transaction all modification for the data-
base are stored in a transaction buffer. A transaction can
start as an internal or external transaction.

Internal transactions are used for small transactions upto
10000 updated database entries. Usually a small trans-
action takes just a few seconds. By defining a maximum
buffer count for the transaction you can define a dynam-
ical transaction buffer for speeding up processes as
copying data. In this case the transaction buffer will be
cleared automatically when the buffer limit is reached.

External transactions are stored in a transaction data-
base which is created in a path defined in the TABASE
system variable (or ini-file variable). External transac-
tions are a little bit slower than internal ones but they are
not limited in capacity.

Transactions can be nested. When starting a transaction
while another transaction is running the new transaction
creates a transaction within a transaction. The nesting
level (>0) is returned as transaction level. When the
function returns 0 the transaction could not be started.

Entries, wich are stored in a transaction are locked for
other users until the top-transaction has been terminat-
ed.

Updates can be moved to the upper transaction or
stored in the database using CommitTransaction(). Only
commiting the top transaction will store the updates to
the database. Updates made within a transaction be-
come visible in an upper transaction when the transac-
tion is closed. They become visible for other users when
the top transaction is closed (CommitTransaction).

RoleBack() can be used to undo all updates made within
a transaction.

int16 DBObjectHandle :: BeginTransaction (logical ext_TA, int16

w_maxnum)

Return value The transaction level is usually 1.For nested transaction
it corresponds to the nesting level.

ext_TA External transaction

- 108 -

 YES must be passed to start the transaction as external
transaction, i.e. all modification are stored to an external
transaction base. Otherwise (NO) the transaction is
started as internal transaction, i.e. the modifications are
stored in memory.

w_maxnum Maximum number of entries in transacktion (buffer size)

 The maximum number should be set to UNDEF (0) for
indicating to save only the complete transaction. For de-
fining a transaction buffer to optimize read/write options
use the maximum number of transaction buffer entries
(e.g. 300).

ChangeTimeStamp - Change time stamp for current version

 Each version for a database object has a final time limit.
As long as the time limit for the version lies in the future
you can change the version end by setting a new time
stamp. The new time stamp must always lie in the future.

logical DBObjectHandle :: ChangeTimeStamp (uint16 version_nr,

dttm timestamp)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

timestamp Timestamp

 A time stamp defines a time point by passing date and
time.

Close - Close Object Handle

 Closing the database object handle will reduce the use
count for the access block. The database object access
block is removed, when the use count becomes 0, i.e.
when the last database object handle referring to this
resource is closed or destroyed.

 - 109 -

logical DBObjectHandle :: Close ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CommitTransaction - Commit transaction

 The function stores all changes made in the transaction
to the higher transaction level. When terminating a
transaction for a given transaction level transactions on
lower levels are commited as well. In contrast to other
functions CommitTransaction will not reset the error, i.e.
after committing the transaction any error or warning set
during the transaction is still set.

The function returns an error (YES), when the transac-
tion could not be stored because of an error. This may
happen when a top transaction tries to write to the data-
base or when the transaction has set an error within the
transaction that does not allow storing the transaction. In
this case the error signaled while committing the trans-
action will overwrite any previously set error.

When ppassing AUTO (-1) as transaction level, the cur-
rent (last recently opened) transaction will be closed.

logical DBObjectHandle :: CommitTransaction (int16 talevel)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

talevel Transaction level

 The transaction level is usually 1.For nested transaction
it corresponds to the nesting level.

DBObjectHandle - Create an Database Object handle

 The function creates a new database object handle.

- 110 -

ci - Create database object handle

 The constructor creates a database object handle from a
database handle. The constructor creates a new access
block for the database object handle, that refers to the
root object of the database handle.

 DBObjectHandle :: DBObjectHandle (DBHan-

dle *dbhandle, PIACC accopt, uint16 ver-

sion_nr, ResourceTypes local_ressources)

dbhandle Pointer to database handle

 This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 - 111 -

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

ci1 - Create sub-ordinated object handle by identity

 The constructor creates a sub-ordinated object handle
by locating the database object using the database ob-
ject identification number. A new access block is created
and associated with the database object handle.

 DBObjectHandle :: DBObjectHandle (DBOb-

jectHandle &dbobject, int32 objid, PIACC ac-

copt, uint16 version_nr, ResourceTypes lo-

cal_ressources)

dbobject Database Object handle

objid Local object identity (LOID)

 The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

version_nr Internal version number

- 112 -

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

ci2 - Create sub-ordinated object handle by name

 The constructor creates a sub-ordinated object handle
by locating the database object using the database ob-
ject name. A new access block is created and associat-
ed with the database object handle.

 DBObjectHandle :: DBObjectHandle (DBOb-

jectHandle &dbobject, char *objname, PIACC ac-

copt, uint16 version_nr, ResourceTypes lo-

cal_ressources)

dbobject Database Object handle

objname Database object name

 Database object name is passed as 0-terminated string
with maximum 40 charcters.

accopt Access option

 - 113 -

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

ci3 - Create database object for data source

 This constructor creates a database object handle ac-
cording to the specification in a data source. The passed
access mode allows overwriting the access mode de-
fined in the data source. The data source must be de-
scribed either in the ini-file passed to the application or in
the data catalogue defined in the ini-file.

 DBObjectHandle :: DBObjectHandle (ODA-

BAClient &odaba_client, char

*data_source_name, PIACC access_mode, Re-

sourceTypes local_ressources)

odaba_client ODABA Client Handle

- 114 -

 The ODABA client handle can be passes as connectet
or ea empty handle.

data_source_name Data source name

 The data source name is passed as 0-terminated string
with a maximum length of 40 characters.

access_mode Access mode

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

Default: PI_Read

local_ressources Resource type

 Depending on the resource type the database or dic-
tionary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

i05 - Copy constructor

 The function creates a database object handle that uses
the same access block as the handle passed to the con-
structor.

 DBObjectHandle :: DBObjectHandle (const

DBObjectHandle &obhandle_refc)

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

 - 115 -

i3 - Internal constructor

 This constructor is used internally, only.

 DBObjectHandle :: DBObjectHandle (ACOb-

ject *acobject)

acobject

i4 - Dummy constructor

 The constructor creates a database object handle with-
out access block. This handle cannot be used until it
opened explicitly using the Open() function.

 DBObjectHandle :: DBObjectHandle (

)DisableEventHandling - Disable event han-
dling

 The function will disable external event handlingfor the
database (object), i.e. events are not sent to external
event handlers set for property handles or to the client.

void DBObjectHandle :: DisableEventHandling (

)EnableEventHandling -

 The function will enable external event handling for the
database (object) after it has been disabled, i.e. events
are sent again to external event handlers set for property
handles or to the client.

void DBObjectHandle :: EnableEventHandling ()EventHandling -
Is event handling enabled?

 The function returns whether external events are ena-
bled or not (see EnableEventHandling() and DisableEv-
entHandling())

logical DBObjectHandle :: EventHandling ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

- 116 -

ExecuteDBObjectAction - Execute object context function

 The function calls an action that is defined in the data-
base object context. The function is executed on the
server side first. If it was executed successfully, the func-
tion is executed on the client side, too.

The action may use the SetActionResult() function to
pass the result of the action to the client application. If
execution of the function on the client side returns NO
the result passed from the server overwrites any result
set by the client function. The result can be retrieved
from the client application using the function GetAction-
Result().

logical DBObjectHandle :: ExecuteDBObjectAction (char

*action_name, char *parm_string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

action_name Name of the action to be performed

 The name of the action is passed as 0-terminated string
with a maximum length of 40 significant characters.

parm_string Parameter string

 The parameter string is passed as 0-terminated string
and contains the parameters according to the conven-
tions of the action called.

ExtentExist - Does Extent exist in database object

 An extent defined logically in the database schema need
not exist in a database or database object. Extents are
created in the database object automatically when ac-
cessing it the first time with write access. The function
returns whether an extent has been already created in
the given object (YES) or not (NO).

logical DBObjectHandle :: ExtentExist (char *extnames)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

extnames Extent name

 - 117 -

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

GetAccess - Get access mode for object handle

 The function returns the access mode set for the object
handle when opening it.

PIACC DBObjectHandle :: GetAccess ()

Return value The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

GetActionResult - Get result from last action executed

 The function returns the resultstring from the last action
executed. The result string is available until the next ac-
tion call, only. When the action does not return a result
the function returns NULL.

char *DBObjectHandle :: GetActionResult ()

Return value The result string can be a list of strings where strings are
usually separated by x01 characters. If there is only one
string returned the string is 0-terminated. Multiple strings
are terminated with 0 after the last string in the list, which
should be terminated with x01 as well.

GetDBHandle - Provide database handle

 The function returns the database handle the for the da-
tabase the referenced database object belongs to.

DatabaseHandle &DBObjectHandle :: GetDBHandle ()

Return value This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

GetDictionary - Get dictionary handle

 The function returns the dictionary handle for the data-
base.

DictionaryHandle &DBObjectHandle :: GetDictionary () const

Return value An opened dictionary handle is passed.

- 118 -

GetExtent - Provide extent form Database Object

 The function returns the name of the n-th extent in the
list of extents that are allocated for the database object.
The collection of allocated extents does not necessarily
include all defined extents. Extent names are provided in
alphabetic order. The first extent has the index 0.

After providing the last extent name the function returns
NULL for the next extent name.

char *DBObjectHandle :: GetExtent (int32 indx0)

Return value The name is passed as 0-terminated string or as buffer
with trailing blanks and a maximum length of 40 charac-
ters.

indx0 Position in collection

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

GetHighObject - Get parent object

 The function returns the parent database object handle.

DBObjectHandle &DBObjectHandle :: GetHighObject ()

Return value This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

GetObject - Get Database Object

 The function returns the name of the n-th database ob-
ject in the list of sub-ordinated objects. Database object
names are provided in alphabetic order. The first object
has the index 0.

After providing the last database object name the func-
tion returns NULL.

char *DBObjectHandle :: GetObject (int32 indx0)

Return value Database object name is passed as buffer with 40
charcters.

indx0 Position in collection

 - 119 -

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

GetStructDef - Get structure definition

 The function returns the structure definition for the struc-
ture name passed. The structure definition is provided
from the dictionary associated with the database object
handle.

DBStructDef *DBObjectHandle :: GetStructDef (char *strnames)

Return value The structure definition (DBStructDef) contains the
metadata for the instance, i.e. information for the struc-
ture and its properties.

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

GetSystemVersion - Get system version

 The fiunction provides the schema version of the ODA-
BA system, which is the dictionary for a dictionary.

uint16 DBObjectHandle :: GetSystemVersion ()

Return value Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

GetTimeStamp - Get date/time for version

 The function returns the termination time for the version
number passed to the function.

dttm DBObjectHandle :: GetTimeStamp (uint16 version_nr)

Return value A time stamp defines a time point by passing date and
time.

version_nr Internal version number

- 120 -

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

GetVersion - Get version number for the time point

 The function returns the veriosn number that includes
the passed time point.

uint16 DBObjectHandle :: GetVersion (dttm timestamp)

Return value Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

timestamp Timestamp

 A time stamp defines a time point by passing date and
time.

IsClient - Is database object client object?

 The function returns, whether the database object has
been created on the client side (YES) or not (NO). Data-
base objects in local applications are both, client and
server objects.

logical DBObjectHandle :: IsClient ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsOpened - Is database object opened?

 The function returns whether the database object has
been opened (YES) or not (NO), i.e. whether an access
block is asociated with the handle.

logical DBObjectHandle :: IsOpened ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

 - 121 -

IsValid - Is database object valid?

 The function returns whether the database object has
been opened and whether the associated access block
is valid (YES) or not (NO).

logical DBObjectHandle :: IsValid () const

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

NewVersion - Create new version

 The function creates a new version slice for the data-
base object. The timestamp passed indicates, when the
current version is to be closed and when the new version
will start. You cannot define a timepoint in the passed for
ctrating a new version, i.e. the time point must be 'now'
(empty) or a value that is in the future.

New versions can be created for databases enabled for
workspaces only, when all workspaces are empty (con-
solidated or discarded).

logical DBObjectHandle :: NewVersion (dttm timestamp, uint16

version_nr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

timestamp Timestamp

 A time stamp defines a time point by passing date and
time.

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

- 122 -

Open - Open database object handle

 The function opens a database object handle. When an
access block is opened for the object handle it will be
closed before.

ci - Open database object handle

 The function opens a database object handle for the da-
tabase handle. The function creates a new access block
for the database object handle, that refers to the root
object of the database handle.

logical DBObjectHandle :: Open (DBHandle *dbhandle, PIACC ac-

copt, uint16 version_nr, ResourceTypes lo-

cal_ressources)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbhandle Pointer to database handle

 This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 - 123 -

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

ci1 - Open sub-ordinated object handle by identity

 The function opens a sub-ordinated object handle by
locating the database object using the database object
identification number. A new access block is created and
associated with the database object handle.

logical DBObjectHandle :: Open (DBObjectHandle &dbobject, int32

objid, PIACC accopt, uint16 version_nr, Re-

sourceTypes local_ressources)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbobject Database Object handle

objid Local object identity (LOID)

 The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

- 124 -

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

ci2 - Open sub-ordinated object handle by identity

 The function opens a sub-ordinated object handle by
locating the database object using the database object
name. A new access block is created and associated
with the database object handle.

logical DBObjectHandle :: Open (DBObjectHandle &dbobject, char

*objname, PIACC accopt, uint16 version_nr, Re-

sourceTypes local_ressources)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbobject Database Object handle

objname Database object name

 - 125 -

 Database object name is passed as 0-terminated string
with maximum 40 charcters.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

ci3 - Open Database Object Handle for Data Source

 This function opens a database object handle according
to the specification in a data source. The passed access
mode allows overwriting the access mode defined in the
data source. The data source must be described either
in the ini-file passed to the application or in the data
catalogue defined in the ini-file.

- 126 -

logical DBObjectHandle :: Open (ODABAClient &odaba_client, char

*data_source_name, PIACC access_mode, Re-

sourceTypes local_ressources)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the func-
tion returns YES more detailed error information are
available in the error object.

odaba_client ODABA Client Handle

 The ODABA client handle can be passes as connectet
or ea empty handle.

data_source_name Data source name

 The data source name is passed as 0-terminated string
with a maximum length of 40 characters.

access_mode Access mode

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

Default: PI_Read

local_ressources Resource type

 Depending on the resource type the database or dic-
tionary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

 - 127 -

RollBack - Roll back transaction

 The function discards all changes made in the transac-
tion. When terminating a transaction for a given transac-
tion level transactions all lower levels are discarded as
well. In contrast to other functions RollBack will not reset
the error, i.e. after rolling back the transaction an error
set during the transaction is still set.

The function returns an error (YES), when the transac-
tion could not be reset because of an error. This may
happen when some of the included access blocks could
not be reset properly. In this case the error signaled dur-
ing roll back of transaction will overwrite an error set dur-
ing the transaction.

logical DBObjectHandle :: RollBack (int16 talevel)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

talevel Transaction level

 The transaction level is usually 1.For nested transaction
it corresponds to the nesting level.

SetActionResult - Set result string

 The function allows setting a result string for the data-
base object (or the database) handle. The result string
can be retrieved with the GetActionResult function. Thus
you can pass the result of any action also to a client ap-
plication while the action is running on the server. The
result is passed as string, i.e. the result must not contain
any 0-characters except the terminating 0.

void DBObjectHandle :: SetActionResult (char *result_string)

result_string Result string

 The result string can be a list of strings where strings are
usually separated by x01 characters. If there is only one
string returned the string is 0-terminated. Multiple strings
are terminated with 0 after the last string in the list, which
should be terminated with x01 as well.

- 128 -

SetOverload - Set object overload

 The function activates the object overload feature. When
this option is activated, extents in the current database
object will overload extents with the same name in par-
ent objects. An extent contains the objects from all in-
stances allong the database object hierarchy.

char DBObjectHandle :: SetOverload (logical overload_opt)

Return value When this option is set to yes extents in a object hierar-
chy can be overloaded.

overload_opt Overload option

 When this option is set to yes extents in a object hierar-
chy can be overloaded.

SetServerVariable - Set system variable on server

 Systemvariables can be set for the server. This is nec-
essary for controlling functions running on the server
side.

Server variables are valid on the server only for the con-
nected client.

logical DBObjectHandle :: SetServerVariable (char *var_name,

char *var_string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

var_name System variable name

 Name of the system variable on the server or client side.
System variable names must not exceed 40 characters
and are provided as 0-terminated strings.

var_string Value for the system variable

 The value for a system variable must not exceed 255
characters and is provided as 0-terminated string.

 - 129 -

SetVersion - Set current version

 The function sets the current version slice that should be
active when accessing instances in the object. Since the
function may influence data selected in property handles
all property handles should be saved and cancelled be-
fore calling the function. Data might get incompatible
when accessing another version and must be refreshed
if not cancelled.

i0 - Set verion according to number

 The current database version is set according to the
passed version number. The version number must be
less or equal to the last version number created for the
database object.

logical DBObjectHandle :: SetVersion (uint16 version_nr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

i1 - Set verion according to date

 The current database version is set according to the
passed date, i.e. to the version slice (version number)
that includes the passed date. The date should be the
current date or a darte in the passed.

logical DBObjectHandle :: SetVersion (dbdt date)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

date Date

- 130 -

i2 - Set verion according to timestamp

 The current database version is set according to the
passed timepoint, i.e. to the version slice (version num-
ber) that includes the passed timepoint. The date should
be the current date or a darte in the passed.

logical DBObjectHandle :: SetVersion (dttm timestamp)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

timestamp Timestamp

 A time stamp defines a time point by passing date and
time.

VersionCount - Get number of versions

 The function returns the number of versions defined for
the database object. The number is identical with the last
version number defined for the database object. When
no version has created for the database object the func-
tion returns 0.

int32 DBObjectHandle :: VersionCount ()

Return value

VersionIntervall - Get version interval

 The function returns the version interval, i.e. the begin
and end of the version slice with the passed version
number.

INTERVAL(dttm) DBObjectHandle :: VersionIntervall (uint16 ver-

sion_nr)

Return value The time interval contains two timepoints (DATETIME)
for begin and end of the time interval.

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

 - 131 -

operator bool - DBObjectHandle opened?

 The function returns YES (true) when the database ob-
ject is opened and NO (false) when the database object
is not opened or when an error had occured while con-
structing the dictionary handle.

NOTYPE DBObjectHandle :: operator bool () const

Return value

operator= - Assigning a database object handle

 The function will close the odatabase object handle,
when it is opened. The access block from the passed
database object handle is associated with the current
handle increasing the use count by 1.

DBObjectHandle &DBObjectHandle :: operator= (const DBObjectHan-

dle &obhandle_refc)

Return value This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

operator== - Are handles using the same access blocks?

 The operator returns whether the handles refer to the
same database object, i.e. to the same access block.

i0

logical DBObjectHandle :: operator== (const DBObjectHandle

&obhandle_refc)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

- 132 -

i01

logical DBObjectHandle :: operator== (const DatabaseHandle

&dbhandle_refc)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

i02

logical DBObjectHandle :: operator== (const DictionaryHandle

&dictionary_refc)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

~DBObjectHandle - Destructor

 The destructor closes the database object handle. Clos-
ing the database object handle will reduce the use count.
The internal resources, the database object access
block is removed, when the use count becomes 0, i.e.
when the last database object handle referring to this
resource is closed or destroyed.

 DBObjectHandle :: ~DBObjectHandle ()

 - 133 -

DBStructDef - Definition for the internal presentation
of data structures and enumerations

 Definitions for data structures are usually read from an
ODABA2 dictionary. However they can be provided and
filled directly in main storage. Still in this case the defini-
tion should be provided via Dictionary functions to make
them available for the ODABA2 kernel.

From an ODABA2 dictionary structures are provided
only, if they are marked as checked and as ready for a
non test environment.

DBStructDef - Constructor

i0

 DBStructDef :: DBStructDef (char

*strnames, int16 strsid, int32 intlen, int32

extlen, TYP_TYPES metatype, SDB_ST strtype,

int16 basecount, int16 attrcount, int16 re-

frcount, int16 rshpcount, char *idkeynames,

logical w_vf_opt, int16 w_schema_version, log-

ical w_versioning, logical glob_identity)

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and
trailing blanks.

strsid Internal structure number

 Internal number identifying a data structure within a
ODABA2 dictionary.

intlen Internal length

extlen External length

metatype Meta type for a type definition

 Via a structure definition can described a data structure,
a basic data type or an enumeration.

strtype Structure meta type

basecount Number of base structures

attrcount Number of attributes

- 134 -

refrcount Number of references

rshpcount Number of relationships

idkeynames Name of the identifying key

 Pointer to a null-terminated string containing the ident
key name.

w_vf_opt Consider virtual function pointer

w_schema_version Scheme version

 Number of version for the scheme the data structure
definitions stands for.

If the number is not known, it can be retrieved from the
{.r Dictionary} via the function {.r ACOb-
ject.GetVersion}().

w_versioning Consider online versioning for data

i01

 DBStructDef :: DBStructDef (

)GetAttrPath - Provide path for the indexed
attribute

 The function retrieves the path for attributes with basic
types, only. Structured Attributes referenced directly (no
pointers) such as base structures are resolved.

Generic attributes are considered as references in this
case (see also {.r DBStructDef.GetRefPath()}).

int32 DBStructDef :: GetAttrPath (int32 indx0, logical

full_path, char *fld_path, int32 maxlen, logi-

cal with_generics, logical search_in_sharebase

)

Return value Position the entry is located at. If the entry could not be
locates its contains the number of entries for the data
structure.

indx0 Position in collection

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

full_path Full path

 - 135 -

 The full path option is used to request the property path
including base structure names.

Default: YES

fld_path Property path

 Pointer to the buffer that is to receive the property path
string.

maxlen Size of output buffer

 Specifies the length of the buffer, the information should
be stored into. The information is truncated if it is longer
than the buffer.

GetEntry - Provide DB-FieldDefinition entry

 The function retrieves the definition for a property by
name or position.

Using this function, only property definitions explicitely
defined for this structure can be retrieved.

Use {.r smcb.SearchField()} to retrieve a property from
a base structure or from a structured attribute vie path.

i0

DBFieldDef *DBStructDef :: GetEntry (char *fldnames)

Return value

fldnames

i1

DBFieldDef *DBStructDef :: GetEntry (int16 sindex)

Return value

GetRefPath - Provide path for the indexed reference

 The function retrieves the path for references and rela-
tionships in base structures, for generic attributes attrib-
utes and for references and relationships of the structure
itself.

int32 DBStructDef :: GetRefPath (int32 indx0, logical full_path,

char *fld_path, int32 maxlen, logical

with_generics, logical search_in_sharebase)

- 136 -

Return value Position the entry is located at. If the entry could not be
locates its contains the number of entries for the data
structure.

indx0 Position in collection

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

full_path Full path

 The full path option is used to request the property path
including base structure names.

Default: YES

fld_path Property path

 Pointer to the buffer that is to receive the property path
string.

maxlen Size of output buffer

 Specifies the length of the buffer, the information should
be stored into. The information is truncated if it is longer
than the buffer.

GetSortKeySMCB - Provide key definition

smcb *DBStructDef :: GetSortKeySMCB (char *fldnames)

Return value The smcb is a more general way to define structure
(DBStructDef). It contains information for the structure
and its properties. In contrast to the DBStructDef the
smcb describes structure members regardless on the
rule they may play in the structure.

fldnames

GetStrDefVersion - Provide structure definition for a previous
scheme version

 The function retrieves the data structure definition valid
for the given scheme version. Usually this structure defi-
nition is read from the dictionary.

If the scheme version is invalid the function returns
NULL.

DBStructDef *DBStructDef :: GetStrDefVersion (Dictionary

*dictptr, uint8 schemaversion)

 - 137 -

dictptr Dictionary handle

 An opened dictionary handle is passed.

schemaversion Scheme version

 Number of version for the scheme of data structure defi-
nitions.

If the number is not known, it can be retrieved from the
{.r Dictionary} via the function {.r ACOb-
ject.GetVersion}().

IsBasedOn - Is the data structure a specialization of another
one ?

 The function returns YES, if the data structure has a
base structure of given type. The base structure is
searched recursive.

logical DBStructDef :: IsBasedOn (char *strnames)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

get_attr_info - Provide information about the attribibutes of the
data structure

MemberInfo &DBStructDef :: get_attr_info ()

Return value

get_base_info - Provide information about the base structures
of the data structure

MemberInfo &DBStructDef :: get_base_info ()

Return value

get_refr_info - Provide information about the references of the
data structure

MemberInfo &DBStructDef :: get_refr_info ()

Return value

- 138 -

get_rshp_info - Provide information about the relationships of
the data structure

MemberInfo &DBStructDef :: get_rshp_info ()

Return value

get_sb_number - Provide SubBase number

 Persistant instances of a data structure can be stored in
a defined SubBase within the ODABA2 data base (see
also {.r SDB_ODABA_Str.sb_number}).

The function retrieves the SubBase Number defined for
the data structure.

int16 DBStructDef :: get_sb_number ()

Return value Sub-bases for a main base are numbered contineously.
The highest sub-base number is 255.

get_schema_ver - Provide the scheme version

 The function retrieves the scheme version of the data
structure definition.

Usually this is the number of the project version, within
the data structure was modified last time.

int16 DBStructDef :: get_schema_ver ()

Return value Number of version for the scheme of data structure defi-
nitions.

If the number is not known, it can be retrieved from the
{.r Dictionary} via the function {.r ACOb-
ject.GetVersion}().

~DBStructDef - Destructor

 DBStructDef :: ~DBStructDef ()

 - 139 -

DB_Event - Database Events

 Database events are generated when the process state
of an instance or collection changes (e.g. open or read)
or when general changes on an instance or collection
are signaled. Database events are signaled, when per-
forming special system actions as a requested action did
not perform well (e.g. not deleted).

There are three different groups of events. Pre-events or
process events (DBP_...) are generated before running a
requested action. When handling those events the event
handler can return an error (YES) to abort the action.
This allows checking the action to be performed. Post-
events (DBO_...) are events that are generated after
performing the action. The return code from a post event
is not checked by the system. Post-events allow applica-
tion specific actions after the action has been performed.
Error events (DBO_Not...) are signaled when the action
aborted because of the returncode of the pre-handler or
because of an error.

Events are generated for instances and properties (col-
lections, attributes). Database events can be handled by
over loaded functions in the structure or property con-
text, but also by means of property handle event han-
dlers.

DB_undefined - Event is undefined

DBO_Initialize - Initializing an instance

 Generated for: Instances

The event is generated when an instance has been ini-
tialized. This usually happens before reading or creating
an instance or when using the GetInitInstance() property
handle function.

The event handler may chnage attributes within the in-
stance but cannot refer to referenced instances in collec-
tion properties.

- 140 -

DBO_Read - Read event

 Generated for: Instances, Properties

The read event is generated when an instance has been
read into the instance area of a property handle. When
the event is generated, all properties are avaialble and
can be accessed. The event handler allows e.g. filling
transient properties or locating instances in sub-
ordinated collection properties.

DBO_Stored - Instance stored

 Generated for: Instances, Properties

The event is generated after storing an instance to the
database (or transaction). This happens, when the in-
stance selection for a property handle has been changed
and the last selected instance has been updated or
when the instance is explicitely saved (Save()). The
event handler allows e.g. re-filling transient properties or
updating related instances.

The Instance stored must not be modified when handling
this event. Modifying key components of the instance
within this handler will cause database inconsistency.

DBO_Inserted - Instance inserted

 Generated for: Collection Properties

The event is generated after an instance has been suc-
cessfully inserted to a collection. It does not matter,
whether the instance has been created or an existing
instance has been added to a collection.

When the event is generated the instance is selected for
the property handle, i.e. attributes and collection proper-
ties for the instance can be accessed.

 - 141 -

DBO_Removed - Instance removed from collection

 Generated for: Collection Properties

The event is generated after an instance has been suc-
cessfully removed from a collection. It does not matter,
whether the instance has been deleted or only removed
from the collection.

When the event is generated the instance is not selected
for the property handle, i.e. attributes and collection
properties for the instance cannot be accessed.

DBO_Deleted - Instance deleted

 Generated for: Instances

The event is generated after an instance has been suc-
cessfully deleted. Usually, the deleted event is preceed-
ed by a removed event (DBO_Removed).

When the event is generated the instance is not selected
for the property handle, i.e. attributes and collection
properties for the instance cannot be accessed.

DBP_Modify - Before Modify Instance

 Generated for: Instances, Properties

The event is generated before updating the instance
(e.g. when assining a different value to a property handle
or when calling the Modify() function explicitly). When
the event is generated the instance is selected and all
attributes and collection properties can be accessed.

The function allows checking wether the modification is
allowed and may reject the request if not.

- 142 -

DBP_Insert - Before Insert Instance

 Generated for: Collection Properties

The event is generated before an instance is inserted to
a collection. When the event is generated the selection
state of the property handle depends on the application,
i.e when an instance was selected in the property handle
this is still available. Thus, values for initialising a new
instance can be copied from the last instance selected.
The new instance is not available at this time.

Usually, the insert event is followed by an initialize (and
create - for new inszances) event. Only in case of a
move operation the instance is selected when this event
is generated and no initialize event is generated.

The event handler may check, wether insertion is al-
lowed or not and may abort the request by returning an
error (YES).

DBP_Remove - Before Remove Instance

 Generated for: Collection Properties

The event is generated before an instance is removed
from a collection. When the event is generated the in-
stance is selected in the property handle and still acces-
sible. Thus, the permission for removing the instance
can be checked or other actions can be performed.

The remove event is followed by a delete event, when
the action is executed for an owning or dependent col-
lection.

The event handler may return an error (YES) for cancel-
ling the request.

 - 143 -

DBP_Delete - Before Delete Instance

 Generated for: Instances

The event is generated before an instance is deleted.
When the event is generated the instance is selected in
the property handle and still accessible. Thus, the per-
mission for deleting the instance can be checked or oth-
er actions can be performed.

The event handler may return an error (YES) for cancel-
ling the request.

DBO_Opened - Instance or property opened

 Generated for: Instances, Properties

The event is generated, when in instance or property
handle has been opened. It allows initial settings in the
context class for the instance or property.

DBO_Close - Property or instance context closed

 Generated for: Instances, Properties

The event is generated, when in instance or property
handle has been closed. It allows final actions in the
context class for the instance or property. Close events
cannot be denied.

DBP_Create - Create Instance

 Generated for: Instances

The event is generated when crating a new instance.
The event is not generated for imbedded structures but
only for instances in references, relationships and
shared base structures. The event is generated after the
initialise event and allows initial settings for attributes in
the instance. Subsequent collection properties cannot be
accessed.

Creating an instance can be denied (e.g. no sufficiant
access rights) by returning an error (YES) from the event
handler.

- 144 -

DBO_Created - Instance created

 Generated for: Instances

The event is generated sfter crating a new instance. The
event is not generated for imbedded structures but only
for instances in references, relationships and shared
base structures. The event allows initial settings for at-
tributes in the instance. Subsequent collection properties
cannot be accessed.

Creating an instance can be denied (e.g. no sufficiant
access rights) by returning an error (YES) from the event
handler.

DBP_Store - Store Instance

 Generated for: Instances, Properties

The event is generated before storing an instance to the
database (or transaction) or a property (attribute) to an
instance. The event is generated also for all imbedded
structures and base structures. This happens, when the
instance selection for a property handle has been
changed and the last selected instance has been updat-
ed, when the instance is explicitely saved (Save()) or
when assigning a new value to a property handle. The
event handler allows e.g. re-filling transient properties or
updating related instances.

The Instance stored must not be modified when handling
this event. Modifying key components of the instance
within this handler will cause database inconsistency.

Storing the instance can be denied by returning an error
(YES) from the event handler.

DBO_NotCreated - No instance created

 Generated for: Instances

Creating a new instance has terminated with a system
error or by the DBP_Create event. More information
about the error you may get from SDBError().

 - 145 -

DBO_NotInserted - Instance not inserted

 Generated for: Instances

Inserting an instance has terminated with a system error
or by the DBP_Insert event. More information about the
error you may get from SDBError().

DBO_NotOpened - Context not opened

 Generated for: Instances, Properties

Opening an instance or property context has terminated
with a system error or by the DBP_Open event. The
property handle is not accessible. More information
about the error you may get from SDBError().

DBO_NotRemoved - Instance not removed

 Generated for: Instances

Removing an instance has terminated with a system
error or by the DBP_Remove event. More information
about the error you may get from SDBError().

DBO_NotDeleted - Instance not deleted

 Generated for: Instances

Deleting an instance has terminated with a system error
or by the DBP_Delete event. More information about the
error you may get from SDBError().

- 146 -

DBO_Refresh - Refresh Event

 Generated for: Properties

The refresh event indicates that the environment of a
property handle has been changed. This usually hap-
pens for the sub property handles when another in-
stance is selected in a parent property handle. In con-
trast to the read event the refresh event is generated
only when the property handle is used, i.e. when being
accessed or when an event handler is registered for the
property handle. Thus, especially GUI applications are
able to react imediately on changing collections.

The refresh event is used to update transient references
or collections when an instance has changed. To avoid
unecessary updates the refresh is generated only when
data is requested from the property handle the first time
after the parent handle has changed and not when read-
ing the parent instance.

It is also possible to generate the event from the applica-
tion using the property handle function Refresh().

DBP_Open - Opening instance or property context

 Generated for: Instances, Properties

The event is generated, when an instance or property
context is going to be opened. The property handle is
accessible at this time, i.e. the event handler may ac-
cess the instance collection (e.g. setting sort order or
selecting an instance in a property handle).

Opening the context can be denied (e.g. no sufficiant
access rights) by returning an error (YES) from the event
handler.

 - 147 -

DBP_Read - Before Read Event

 Generated for: Instances

This event is generated for structure instances before
reading an instance. At the time, when the event is gen-
erated, the instance is already selected in the property
handle. Key data for the sort key is already available and
can be copied to the instance area using the SetKey()
structure context function or can be provided by using
the GetKey() context function.

The handler can be used to optimize read access by
returning an error or marking an instance as 'hidden'
(HideInstance()), when an instance with the given key
should not be provided.

DBP_Select - Select Instance

 Generated for: Instances

An instance is going to be selected for the property han-
dle. The new instance has already been selected for the
property handle and attributes and collection properties
are accessible.

The event handler may return an error (YES) to refuse
the current selection of the instance, in which case the
instance is unselected immediately.

DBP_Unselect - Unselect instance

 Generated for: Instances

An instance is going to be unselected for the property
handle. The instance is still selected and not stored
(when being updated) and attributes and collection
properties are accessible.

The event handler may return an error (YES) to refuse
the unselection of the instance, in which case the in-
stance remains selected.

- 148 -

DataSourceHandle - Data source

 A data source describes an ODABA data source on a
certain level (Dictionary, Database, DBObject, Extent,
Instance). A data source can be parametrized by means
of an INI-file. The INI file contains the names for the ob-
jects on the different levels. Not specified lower levels
are not opened and have to be opened in the application
(e.g. when defining only dictionary and database the
extent is not opened and no instance is selected), The
datasource is defined as section in the INI-file starting
with the [datasource name].

A data source can be directed to a server. In this case
the datasource has to be opened with a connected
ODABA client or the INI-file must contain a server speci-
fication. In the last case the data source connects to the
server automatically when opening the data source. The
connection is owned by the datasource in this case.

A data source cane be opened and closed as a whole
(Open(), Close()) or separately on each definition level
(Connect(), OpenDictionary(), ...).

BeginTransaction - Start transaktion for the data source

 Data sources provide simple transaction control. Data
source transactions cannot be nested, i.e. when a trans-
action is running for the datasource no other transaction
can be started.

Using nested transactions is possible with the DBObjec-
tHandle.

logical DataSourceHandle :: BeginTransaction (logical ext_ta)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ext_ta External Transaction

 The option indicates that updates made within the trans-
action should be stored on a disk. This option should be
set when the transaction is a long transaction that helds
many (100 000) or more updates in the transaction.

 - 149 -

Close - Close DataSourceHandle

 The handles on all hierarchy levels (Dictionary to Extent)
are closed when they are owned (opened) by the Data-
SourceHandle.

logical DataSourceHandle :: Close ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CloseDBObject - Close DBObjectHandle

 The DBObjectHandle and subsequent handles (Proper-
tyHandles) are closed beginning with the lowest opened
handle. Handles are closed only when they have been
opened by the datasource handle. Property handles
opened by the application must be closed by the applica-
tion before.

logical DataSourceHandle :: CloseDBObject ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CloseDatabase - Close DatabaseHandle

 The DatabaseHandle and subsequent handles (DBOb-
jectHandle and PropertyHandle for Extents) are closed
beginning with the lowest opened handle. Handles are
closed only when they have been opened by the data-
source handle.

When a data source transaction has is still running it will
be commited.

logical DataSourceHandle :: CloseDatabase ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 150 -

CloseDictionary - Close DictionaryHandle

 The DictionaryHandle and subsequent handles for Data-
base, DatabaseObject and Extent are closed beginning
with the lowest opened handle. Handles are closed only
when they have been opened by the datasource handle.

logical DataSourceHandle :: CloseDictionary ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CloseProperty - Close PropertyHandle

 The PropertyHandle for the defined extent is closed.
Handles are closed only when they have been opened
by the datasource handle.

logical DataSourceHandle :: CloseProperty ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CommitTransaction - Terminate transaction

 The datasource transaction it stopped and modifications
are stored to the database. Commiting the data source
transaction will commit all subsequent DBObjectHandle
transactions that are still running.

logical DataSourceHandle :: CommitTransaction ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 151 -

Connect - Connect DataSourceHandle to server

 The function connects the DataSourceHandle to a serv-
er. The server name (server_name) and port number
(port_number) must be defined in the DataSourceHandle
before calling this function.

If no client object (odaba_client) is passed a client object
is created when a server is defined. If no server name is
defined the function does not try to connect.

logical DataSourceHandle :: Connect (ODABAClient &odaba_client)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

odaba_client ODABA Client Handle

 The ODABA client handle can be passes as connectet
or ea empty handle.

DataSourceHandle - Construcktor

 The constructor creates a DataSourceHandle. Before
openeing a datasource database pathes and object and
extent names have to be set. This can be done by ex-
plicitly setting the pathes and names in the programm or
by means of an INI-file using the SetupVariables() func-
tion..

 DataSourceHandle :: DataSourceHandle (

)Disconnect - Disconnect from server

 The function disconnects from the server. When the
DataSourceHandle is still opened it is closed (Close())
before disconnecting.

Disconnecting will delete the ODABAClient when it has
been created by the DataSourceHandle.

logical DataSourceHandle :: Disconnect ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 152 -

GetClient - Get client handle from data source

 The function returns the client handle from the data
source.

ODABAClient &DataSourceHandle :: GetClient ()

Return value The ODABA client handle can be passes as connectet
or ea empty handle.

Open - Open DataSourceHandle

 A Datasource consists of a Dictionary and a Database.
In addition a DatabaseObject and an Extent can be de-
fined. The data source can be closed using the function
Close(). If a DataSourceHandle is already opened this is
closed before reopening the DataSourceHandle with the
current parameters.

The data source is defined by means of external re-
source defintions in the DataSourceHandle (serv-
er_name, dict_path, db_path, object_name, ex-
tent_name, inst_key).

i0 - Open empty data source

 A data source can be opened when the application has
filled the external specifications for the data source. At
least the dict_path should be set in the data source be-
fore openeing.

The data source should be opened only, when all exter-
nal resources to be accessed are defined in the data
source. When the client is not connected the server
specifications (server_name and port_number) shuold
be set as well. This is not necessary when running a
local application.

logical DataSourceHandle :: Open (ODABAClient &odaba_client,

PIACC acc_mod)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

odaba_client ODABA Client Handle

 The ODABA client handle can be passes as connectet
or ea empty handle.

 - 153 -

acc_mod Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

Default: PI_Read

i02 - Opening datasource based on ini-file section

 The function opens the data source based on external
resource definitions passsed in the ini-file. The inifile
section name containing the resource definitions is
passed as datasource_name to the function. The re-
source definitions in the data source are filled from the
corresponding resource definitions in the ini-file.

logical DataSourceHandle :: Open (ODABAClient &odaba_client,

char *ini_file, char *datasource_name)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

odaba_client ODABA Client Handle

 The ODABA client handle can be passes as connectet
or ea empty handle.

ini_file Application ini-file

 The ini-file may contain several sections providing appli-
cation or data source information. The path to the ini-file
is passed as 0-terminated string.

datasource_name Name of the data source

 The name of the data source defines the section in the
INI-file or an entry in the data catalogue that contains the
external data source definitions.

- 154 -

i1 - Opening data source from catalogue

 The function opens the data source based on external
resource definitions passsed stored in the data source
catalogue. In this case the external resource defitions
are read from the catalogue where an entry with the
passed datasource_name must exist.

Using the catalogue feature the catalogue data source
must be provided in a catalogue [DATA-CATALOGUE]
section of the ini-file (local application) or in a corre-
sponding section of the server. The resource definitions
in the data source are filled from the corresponding re-
source definitions in the catalogue entry before opening
the data source.

logical DataSourceHandle :: Open (ODABAClient &odaba_client,

char *datasource_name)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

odaba_client ODABA Client Handle

 The ODABA client handle can be passes as connectet
or ea empty handle.

datasource_name Name of the data source

 The name of the data source defines the section in the
INI-file or an entry in the data catalogue that contains the
external data source definitions.

OpenDBObject - Open DBObjectHandle

 The DBObjectHandle is opened for the database object
defined in the database path (object_name). The Data-
baseHandle of the DataSource must be opened before.
If the DBObjectHandle is already opened it will be closed
before opening the new DBObjectHandle (CloseDBOb-
ject()).

When the object name is empty the root object of the
opened database is provided.

DBObjectHandle &DataSourceHandle :: OpenDBObject ()

Return value

 - 155 -

OpenDatabase - Open DatabaseHandle

 The DatabaseHandle is opened for the database defined
in the database path (db_path). The DictionaryHandle of
the DataSource must be opened before. If the Data-
baseHandle is already opened it will be closed before
opening the new DatabaseHandle. (CloseDatabase()).

When the database path is empty the opened Diction-
aryHandle is opened as DatabaseHandle.

DatabaseHandle &DataSourceHandle :: OpenDatabase ()

Return value This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

OpenDictionary - Open DictionaryHandle

 The DictionaryHandle is opened only when a dictionary
path has been defined (dict_path). If another dictionary
has already been opened it is closed (CloseDictionary())
before re-opening the DictionaryHandle. The Diction-
aryHandle is opened with the access mode passed to
the function. When no database path (db_path) is de-
fined and no access mode is passed the DictionaryHan-
dle is opened with the access mode defined for the da-
tabase,

DictionaryHandle &DataSourceHandle :: OpenDictionary (PIACC ac-

copt)

Return value An opened dictionary handle is passed.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

OpenProperty - Open PropertyHandle

 The PropertyHandle can be opened only when the
DBObjectHandle is opened for the data source and an
extent name (extent_name) has been specified. If a
PropertyHandle is already opened it will be closed
(CloseProperty()) before re-open the handle.

PropertyHandle *DataSourceHandle :: OpenProperty (char *extname

)

- 156 -

Return value Is a pointer to an (usually) opened property handle.

extname Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

RollBack - Roll back modifications made in the transaction

 All modification made since the transaction has been
started are removed. The transaction is stopped. If there
sur subsequent transactions opened by DBObjectHan-
dles those are closed as well.

logical DataSourceHandle :: RollBack ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

SetDBObject - Set DBObjectHandle

 The function allows setting an opened DBObjectHandle
as DBObjectHandle for the DataSourceHandle. A DBOb-
jectHandle set with this function is not closed when call-
ing (CloseDBObject()). When the DataSourceHandle
has already opened it will be closed (CloseDBObject())
before setting the new DBObjectHandle.

logical DataSourceHandle :: SetDBObject (DBObjectHandle

&ohandle, char *w_objname)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ohandle

SetDataSource - Set data source definitions

 The function sets the external and internal resources as
copied from the passed data source handle. Opened
internal resources (access handle) will not be closed
when closing or destructing the data source handle but
when closing the original data source handle.

 - 157 -

logical DataSourceHandle :: SetDataSource (DataSourceHandle

*dbdefptr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbdefptr Data source handle

 The data source handle contains definitions for external
and internal resources (resource names and opened
resource handles)

SetDatabase - Set DatabaseHandle

 The function allows setting an opened DatabaseHandle
as DatabaseHandle for the DataSourceHandle. When
the DataSourceHandle has already an opened Data-
baseHandle this is closed (CloseDatabase()) before set-
ting the handle passed to the function.

A DatabaseHandle set with this function will not be
closed when closing the data source or the database
handle (Close(), CloseDatabase()).

logical DataSourceHandle :: SetDatabase (DatabaseHandle

&db_handle, char *w_basepath)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

db_handle Pointer to database handle

 This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

w_basepath Path for the opened database handle

 The path for the opened database handle can be passed
to set the original database path in the data source.

- 158 -

SetDictionary - Set DictionaryHandle

 The function allows setting an opened DictionaryHandle
as DictionaryHandle for the DataSourceHandle. A Dic-
tionaryHandle set with this function is not closed when
calling (CloseDictionary()). If the DataSourceHandle has
already an opened DictionaryHandle it will be closed
(CloseDictionary()) before setting the new handle.

logical DataSourceHandle :: SetDictionary (Dictionary *dictptr,

char *w_dictpath)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dictptr Dictionary handle

 An opened dictionary handle is passed.

 - 159 -

SetVariables - Set variables from INI-File

- 160 -

 The function Initializes the DataSourceHandle from the
data source section in the INI-file.

The data source variables must be defined in a section
[datasource_name] in the INI-file. This section may con-
tain the following variables:

ODABA_SERVER=server_name

The server_location specifies the server name (e.g.
ODABAServer1). When no server is specified the re-
sources are supposed to be available locally.

ODABA_SERVER_PORT=server_port

The port number must be the same that has been used
for starting the servers (default is 6123).

DICTIONARY=dict_path

This variable defines the resource database (dictionary).
This variable is mandatory. The value may refer to a
server variable that defines the path on the server. Serv-
er variables must be enclosed in % characters (e.g.
%DICT_PATH%).

DATABASE=db_path

This variable defines the complete path to the database
that contains the application data. The value may refer to
a server variable that defines the path on the server.
Server variables must be enclosed in % characters (e.g.
%DB_PATH%).

WORKSPACE=workspace

When the workspace feature is enabled for the database
a workspace can be defined as active workspace for the
data source by passing a workspace name or a work-
space path..

OBJECT=object_name

The name of database object must be specified if a sub
object space in the database is to be opened..

EXTENT=extent_name

Name of an extent when the DataSource refers to a cer-
tain collection.

STRUCTURE=struct_name

The structure name is used in some cases for perform-
ing metadata operetions (e.g. copying a structure defini-
tion to another dictionary). It is has no direct influence on
the data source but can be retrieved from the applica-
tion.

SCHEMA_VERSION=schema_version

Schema version when the application should be opened
with an older version (not the current version) of the dic-

 - 161 -

logical DataSourceHandle :: SetVariables (char *datasource_name

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

datasource_name Name of the data source

 The name of the data source defines the section in the
INI-file or an entry in the data catalogue that contains the
external data source definitions.

Setup - Setup data source parameters

 The function updates the external resource references
from the ini-file and/or the data catalogue. The ini-file
passed to the function is set as current ini-file for the
data source.

External definitions are copied from the ini-file or data
catalogue section according to the passed data-
source_name into the data source.

logical DataSourceHandle :: Setup (char *ini_file, char

*datasource_name)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ini_file Application ini-file

 The ini-file may contain several sections providing appli-
cation or data source information. The path to the ini-file
is passed as 0-terminated string.

datasource_name Name of the data source

 The name of the data source defines the section in the
INI-file or an entry in the data catalogue that contains the
external data source definitions.

- 162 -

SetupVariables - Setup data source variables from INI-file

 The function tries to initialize the data source parameters
from a section defined in the ini-file. If no such section is
defined or the section refers to a data source in the cata-
logue the function tries to setup the variables from the
corresponding catalogue entry.

logical DataSourceHandle :: SetupVariables (char

*datasource_name)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

datasource_name Name of the data source

 The name of the data source defines the section in the
INI-file or an entry in the data catalogue that contains the
external data source definitions.

~DataSourceHandle - Destructor

 Destructing the datasource will close all handles that are
not yet closed. When a data source transaction is still
running this will be comitted before destroying the data
source.

When working with recovery file thsi is closed as well.

 DataSourceHandle :: ~DataSourceHandle (

)

 - 163 -

DataTypes - ODABA data types

CHAR - Character

 Character fields are defined with a maximum number of
characters. The maximum number of characters in a
character field is limited to 2 GB.

CCHAR - Coded character

 Coded character fields are used when data stored in the
database must be encrypted (e.g. when storing pass-
words in the database). The number of characters in a
coded character field is limited to 256 characters.

STRING - String character

 String fields are character fields with variable size. The
end of the string is indicated with a 0-character (0-
terminated string). 0-termination will only inluence the
representation of the value. String fields are always
stored with the full defined size in the database.

MEMO - Memo character

 Memo character fields are considered as 0-terminated
text fields (like STRING). Memo character fields are
used to store large text fields in the database. Since
memo fields are not directly stored in the instance they
will occupy storage only in the used size.

INT - Signed integer or decimal number

 ODABA consideres decimal velues the same way as
integer values by defining a precision. The size fir an
integer value defines the number of significant digits.

- 164 -

REAL - Float point number

 REAL allows defining float point numbers. For REAL
fields the size defines the number of digits for represent-
ing the field. Values upto 8 define a 4-byte float point
number, values upto 17 define a 8 byte float point num-
ber.

LOGICAL - Logical field

 Logical fields may only contain bool values true (YES)
and false (NO). The size for a logical field should always
be 1.

DATE - Date

 Date fields allow storing date values. The size for a date
filed influences only the standard presentation of the
date, i.e. the date-to-string conversion. Following size
definitions are possible:

 8: "2002/09/14"

 6,7: "02/09/14"

 4,5: "02/09"

 2,3: "02"

Independent on the size the date is stored always with 4
byte.

TIME - Time

 Time fields allow storing time values from 0:00:00,00
upto 23:59:59,99. The size for a time filed influences
only the standard presentation of the time, i.e. the time-
to-string conversion. Following size definitions are pos-
sible:

 8: "23:59:59,99"

 6,7: "23:59:59"

 4,5: "23:59"

 2,3: "23"

Independent on the size the time is stored always with 4
byte.

 - 165 -

DATETIME - Timestamp

 A date/time field is considered as basic data type even
thoug it seems structured like date and time. The size for
the date time field will influence neither the storage size
nor the presentation (to-string conversion). Timestamps
are always presented as

"2002/09/14|23:59:59:99"

VOID - Unknown type

 Unknown types can be defined for references only.
VOID references may refer to a collection or a single
object instance with unknown type. The database will
determine the instance type at run-time in this case.

BIT -

- 166 -

DatabaseHandle - Database Handle

 Database handle must be created for accessing data in
an ODABA database. An ODABA database must be
connected with a dictionary, which defines the object
model for the database.

Each ODABA database consists of at least one Data-
base Object (Root Object) that is the owner od extents
and other data collections.

When creating a database handle the object handle this
is based on a database object handle (-> DBObjectHan-
dle) for the root object, i.e. the database handle inherits
all the functionality from the database object handle.

A database may consists of a number of physical sepa-
rated mainbases, sub-bases and data areas. This is,
however, handles internally after creating the database.
For creating a multiple resource database the database
handle provides several functions for initializing main
and sub bases and data areas.

Moreover, the database handle provides log and recov-
ery features, that allow logging all changes made on the
database or recovering the database in case of errors.

The workspace feature supported by the database han-
dle is a sort of persistent transactions. It allows storing
changes for a longer period outside the database and
consolidating or discarding changes when requested by
the user.

 - 167 -

ActivateShadowBase - Activate Shadow Database

 When running a shadow database (e.g. when worspace
support is enabled) you might want to read information
from the shadow database rather than from the original
database. Since the shadow database contains the in-
formation including all updates made in workspeces and
not yet published, the shadow database is the only place
where logical consistency checks can be made.

The function switches from the original database to the
shadow database and allows reading from the shadow
database, i.e. all read operations are directed to the
shadow database instead of the original database. This
funktion has no effect when the shadow database fea-
ture is not enabled.

When the shadow database is activated restricted up-
dates are possible on instances (you may not change
properties that are referenced as key components).

After performing the checking or other tasks you must
deactivate the shadow database (DeactivateShadow-
Base()).

logical DatabaseHandle :: ActivateShadowBase ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ChangeRecovery - Enable/disable recovery support

 This function allows you to enable or disable the recov-
ery support for the opened database.

To disable the recovery support you can pass 'RECOV-
ERY_none' as recovery type.

To enable recobery support you can pass 'RECOV-
ERY_full' or 'RECOVERY_transaction'. You should ena-
ble the recovery support immediately after the latest
backup.

logical DatabaseHandle :: ChangeRecovery (RecoveryType rec_type,

char *rec_path)

- 168 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

rec_type Type of recovery support

rec_path Folder for recovery files

CheckLicence - Check Application License

 The function checks the license number for the user.
The function returns an error (YES) when the database
or the application is not licensed.

i01 - Register costumer

 The function checks the user name and license number
and registers the license information in the database.
When licensing is requested the license information is
checked whenever the database is opened.

logical DatabaseHandle :: CheckLicence (char *lic_owner, char

*lic_number)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

lic_owner Owner of the licence

lic_number Licence number

 The licence number consists of twelve alphanumeric
characters.

i02 - Check application licence

 The function checks the license for the application name
passed to the function. Applications may request specific
licenses, which can be checked with this function.

logical DatabaseHandle :: CheckLicence (char *applname_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 169 -

applname_w

CloseRecovery - Close recovery file

 The function closes the recovery file. Usually the recov-
ery file is closed when closing the database and should
not be closed explicitely ba the application.

logical DatabaseHandle :: CloseRecovery ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CloseWorkspace - Close Workspace

 Workspaces are closed when closing the database. It is
possible, however, to close the active workspace explic-
itly.Closing the workspace will not save the changes in
the database or lower workspace but keep until the
workspace is opened again.

logical DatabaseHandle :: CloseWorkspace ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ConsolidateWorkspace - Consolidate Workspace

 The function will consolidate all changes made in the
workspace. You can consolidate the currently opened
workspace, only, i.e. you must open the workspace be-
fore consolidating. For consolidating a workspace it must
be opened with exclusive use. Only when no other user
has access to the workspace it is possible to consolidate
it.

logical DatabaseHandle :: ConsolidateWorkspace ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 170 -

DatabaseHandle - Konstructor

 A database can be opened in local, in client/server mode
or in file server mode. Local mode usually implies exclu-
sive access. When running several applications on a
local machine the database should be opened in file
servermode to provide concurrent access to the data-
base. Client/server mode is suggested when running the
database from different clients on a central server.

a1 - Create database handle

 The function creates a database handle for an opened
dictionary. The database path (cpath) passed to the
constructor may contain system variable references that
are resolved before opening the database.

The database can be opened in read or write mode (ac-
copt). When running the database in file server mode the
netoption defines whether the database is running ex-
clusive or can be shared by other users. The lo-
cal_resources parameter defines the way the database
is opened.

For opening an older version for the database you may
pass a version number in version_nr.

 DatabaseHandle :: DatabaseHandle (Dic-

tionaryHandle &dict_handle, char *cpath, PIACC

accopt, logical w_netopt, logical

online_version, uint16 version_nr, Resource-

Types local_ressources, char sysenv)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dict_handle Dictionary handle

 The dictionary handle usually refers to an opened dic-
tionary. To check whether a dictionary is opened you
can use the !-operator.

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

accopt Access option

 - 171 -

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

w_netopt Multi-user option

 YES indicates that multi-user access is requested. NO
indicates exclusive use of database. Accessing a data-
base in update or write mode, NO guarantees absolute
exclusive access.

online_version Online versioning option

 When this option is set the database will be enabled vor
online versioning. When the option is set to NO the sys-
tem variable ONLINE_VERSION is checked instead.

Default: NO

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

sysenv System application

- 172 -

 This option indicates that the application is running as
system application. In this case context functions are
disabled and will not be executed. This option should
never be set in normal applications because this may
lead to logical inconsistence of the database.

c1 - Copy constructor

 This constructor creates a copy of the database handle.
Both, the copy and the origin are referring to the same
resources. The database handle is closed when closing
the last database handle instance for a database, re-
gardles on the sequence the handles have been
opened.

 DatabaseHandle :: DatabaseHandle (const

DatabaseHandle &dbhandle_refc)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbhandle_ref

c2 - Create a copy of the handle

 This constructor creates a copy of the database handle.
Both, the copy and the origin are referring to the same
resources. The database handle is closed when closing
the last database handle instance for a database, re-
gardles on the sequence the handles have been
opened.

 DatabaseHandle :: DatabaseHandle (DBHan-

dle *_dbhandle)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

_dbhandle

 - 173 -

d1 - Create database

 This constructor allows creating a new database. Usually
creating a database explicitly is not necessary. When,
however, special options as low est and higest local
identifiers (LOID) are to be passed this constructor can
be used.

 DatabaseHandle :: DatabaseHandle (char

*cpath, int16 lowEBN, int16 highEBN, int32

dasize, logical largedb, logical pindep)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

lowEBN First entry number in database

 Low range number for the mainbase. Depending on the
database (small or large) the range number is between 0
and 252 (small DB) or 0 and 32767 (0x7fff) for large da-
tabases.

highEBN Last entry number in database

 High range number for the mainbase. Depending on the
database type the range number is between 0 and 252
(small DB) or 0 and 32767 (0x7fff) for large databases.

dasize Size for data area

 The data area size allows limiting the area for the data
area. When no data area is passed (UNDEF), the data
area expands whenever more space is needed.

largedb Large database option

 The large database option idicates that a large database
is to be defined. This information is stored in the data-
base header after creating the database.

pindep Platform independance option

 The plattform independance option idicates that integer
numbers are to be stored in platform independent for-
mat. This information is stored in the database header
after creating the database.

- 174 -

d2 - Create database handle for dictionary

 The function creates a database handle from the dic-
tionary handle.

 DatabaseHandle :: DatabaseHandle (Dic-

tionaryHandle &dict_handle, PIACC accopt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dict_handle Dictionary handle

 The dictionary handle usually refers to an opened dic-
tionary. To check whether a dictionary is opened you
can use the !-operator.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

x1 - Empty database handle

 The constructor creates an empty database handle. A
database can be opened later with this handle using the
Open() function.

 DatabaseHandle :: DatabaseHandle ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

DeactivateShadowBase - Deactivate Shadow Database

 Deactivating the shadow database causes all read oper-
ations being sent to the original database again. This
funktion has no effect when the shadow database fea-
ture is not enabled.

logical DatabaseHandle :: DeactivateShadowBase ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 175 -

DeleteWorkspace - Delete workspace

 The function deletes an existing workspace. The work-
space must be empty before deleting, i.e. discard or
consolidate must run before.

logical DatabaseHandle :: DeleteWorkspace (char *ws_names, char

*user_name)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ws_names Workspace name

 The workspace name is the extension of the current
workspace or database. The database can be consid-
ered as the root for all workspaces. The workspace
name may address a workspace on top of the current
one (simple workspace name) or a workspace on any
higher level by passing a sequence of workspace names
separated by '.'.

user_name User name

 When accessing user protected resources as databases
or workspaces, a user must be passed as 0-terminated
string, otherwise NULL.

DisableWorkspace - Disabeling workspace feature

 Disabeling the workspace feature requires that all work-
spaces have been discarded or consolidated. If this is
not the case active workspaces must be consolidated
before.

When disabling the workspace feature sucsessfully the
shadow database is removed as well.

logical DatabaseHandle :: DisableWorkspace ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 176 -

DiscardWorkspace - Discard Workspace

 The function will through away all changes made in the
workspace for the currently opened workspace. The
workspace will be closed and removed.

logical DatabaseHandle :: DiscardWorkspace ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

EnableWorkspace - Enable workspace feature

 The function enables the usage of workspaces and
shadow database. The function can be executed only
when the database is opened exclusive.

When no path or an empty path is passed as location for
the shadow database the shadow database is positioned
in the same folder as the original database and with the
same name as the database but the extension is
changed to .sdw or appended if no extension has been
defined for the database.

logical DatabaseHandle :: EnableWorkspace (char *sdw_path)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

sdw_path Complete path for shadow database

 The path for the shadow database is passed as 0-
terminated string with a maximum size of 255.

ExecuteDatabaseAction - Execute action on database level

 The function calls an action that is defined in the data-
base context. The function is executed on the server
side first. If it was executed successfully, the function is
executed on the client side, too.

The action may use the SetActionResult() function to
pass the result of the action to the client application. If
execution of the function on the client side returns NO
the result passed from the server overwrites any result
set by the client function. The result can be retrieved
from the client application using the function GetAction-
Result().

 - 177 -

logical DatabaseHandle :: ExecuteDatabaseAction (char

*action_name, char *parm_string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

action_name Name of the action to be performed

 The name of the action is passed as 0-terminated string
with a maximum length of 40 significant characters.

parm_string Parameter string

 The parameter string is passed as 0-terminated string
and contains the parameters according to the conven-
tions of the action called.

ExistWorkspace - Exist workspace?

 The function returns whether a workspace with the
passed workspace name (ws_name) exists as subordi-
nated workspace (YES) or not(NO). When the database
has already opened a workspace the function looks for
the workspace relatively to the opened one.

logical DatabaseHandle :: ExistWorkspace (char *ws_names)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

ws_names Workspace name

 The workspace name is the extension of the current
workspace or database. The database can be consid-
ered as the root for all workspaces. The workspace
name may address a workspace on top of the current
one (simple workspace name) or a workspace on any
higher level by passing a sequence of workspace names
separated by '.'.

GetDatabaseID - Get database resource number

 The function returns the database resource number.

int32 DatabaseHandle :: GetDatabaseID ()

- 178 -

Return value The database resource number is a number that has
been assigned to the database in the database definition
of the dictionary. The database number does not de-
scribe a database as such but more a type of data ba-
ses. It is used to assign the database context class,
which is associated with the database resource number.

GetPath - Get path for the opened database

 The function returns the database path for the opened
database. The path returned refers to the database path
and does not contain system variable references any-
more.

char *DatabaseHandle :: GetPath ()

Return value The complete database path is passed as 0-terminated
string with a maximum length of 255 characters.

GetRecoveryFile - Provide name of recovery file

 The function returns the name of the recovery file ac-
cording to the passed recovery number.

char *DatabaseHandle :: GetRecoveryFile (uint16 recnum)

Return value The name of the recovery file is passed as 0-terminated
string. The recovery file name has been generated when
creating the recovery file ({.r DatabaseHan-
dle.InitRecovery}()).

recnum Numer of recovery file

 Recovery files have an internal number that is generated
when creating the recovery file ({.r DatabaseHan-
dle.InitRecovery}()).

GetRecoveryNum - Provide reacovery number

 The function returns the number for the current recovery
file.

uint16 DatabaseHandle :: GetRecoveryNum ()

Return value Recovery files have an internal number that is generated
when creating the recovery file ({.r DatabaseHan-
dle.InitRecovery}()).

 - 179 -

GetRecoveryPath - Provide path for recovery folder

 The function returns the path for the folder containing the
recovery files.

char *DatabaseHandle :: GetRecoveryPath ()

Return value The recovery path points to a folder that contains the
recovery files. The folder path is passed as 0-terminated
string. The folder has been defined when creating the
recovery file. ({.r DatabaseHandle.InitRecovery}()).

GetSchemaVersion - Get schema version

 The function returns the current schema version number
for the database.

uint16 DatabaseHandle :: GetSchemaVersion ()

Return value

GetSystemVersion - Get system version

 The fiunction provides the schema version of the ODA-
BA system, which is the dictionary for a dictionary.

uint16 DatabaseHandle :: GetSystemVersion ()

Return value

GetVersionString - Provide database version

 The function provides the database version and sub ver-
sion as string.

char *DatabaseHandle :: GetVersionString ()

Return value The version string is passed as 0-terminated string like
e.g. "2.41".

- 180 -

GetWorkspace - Get workspace names

 The function returns the workspaces defined below an
existing workspace or database. The function returns
workspace names by index sorted in alphabetical order
(first entry is retrieved with index 0). Only workspaces on
a given level are returned. To get workspaces on lower
levels you must pass the root path for the lower level.

Workspace information is buffered when retrieving it the
first time. To refresh the internal workspace list you
should pass the refresh option (YES).

For retrieving workspaces owned by the user a user
name can be passed. Not passing a username will re-
turn all workspaces.

The name for the workspace is returned in ws_name in
addition when passing a pointer to a character array.
Otherwise the name is returned only in the result area of
the property handle, which might be destroyed after the
next property handle function call.

char *DatabaseHandle :: GetWorkspace (char *ws_root, int32

ws_index, char *user_name, char *ws_name, log-

ical refresh_opt, char *ws_info)

Return value The workspace name is a 0-terminated string with a
maximum size of 128 characters, which contains the
name of the workspace without the preceeding work-
space path for the hierarchy of upper workspaces.

ws_root Workspace root

 The workspace root is a 0-terminated string that de-
scribes the hirarchy of upper workspaces. The hierarchy
is described by workspace names separated by '.'.

ws_index Number of workspace to be retrieved

 This is the internal number of workspace to be retrieved.
The first workspace is retrieved by index 0.

user_name User name

 When accessing user protected resources as databases
or workspaces, a user must be passed as 0-terminated
string, otherwise NULL.

ws_name Work space name

 - 181 -

 The workspace name is a 0-terminated string with a
maximum size of 128 characters, which contains the
name of the workspace without the preceeding work-
space path for the hierarchy of upper workspaces.

refresh_opt Refresh option

 Setting the refresh option to YES will rebuild the list
completely.

ws_info Workspace information

 A character array with minimum size of 256 characters
can be passed that carries additional workspace infor-
mation when the function has terminated successfully.
Additional nformation is passed as 0-terminated string:

 \i ws_name (ID=ws_number[; Us-
er=user_name])

IgnoreWriteProtect - Ignor permanent write protection

 The function allows disabling the permanent write pro-
tection. After disabling permanent write protection in-
stances that have been marked as permanent write pro-
tected (-> SetWProtect()) can be updated for this data-
base handle.

logical DatabaseHandle :: IgnoreWriteProtect ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

InitDataArea - Initialise DataArea

 The function allows initializing a new data area. Data
areas must be created consecutive order. A data area 0
is created automatically, when creating the upper sub-
base, i.e. the next data area to be crreated would be
data area 1 etc.

logical DatabaseHandle :: InitDataArea (int16 mbnumber, int16

sbnumber, int16 danumber, char *filename,

int32 dasize)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 182 -

mbnumber Main base number

 Mainbase numbers from 0 to 252 (for small databases)
and 0 to 32767 (for large databases) are valid.

sbnumber Sub-base number

 Sub-bases for a main base are numbered contineously.
The highest sub-base number is 255.

danumber Data area number

 Data areas for a sub-base are numbered contineously.
The highest data area number is 255.

filename File name for DataArea file

 The file name is passed as 0-terminated string with a
maximum length of 80 characters. The path may contain
symbolic parameters, which are replaced by the value of
a corresponding system variable or variable set in the
INI-file (e.g.in case of "%ROOT%\base1.rot" - %ROOT%
is replaced by the value of the ROOT system or INI file
variable). The replacement is done only for utility appli-
cations, i.e. a utility control block must have been creat-
ed (see {.r UtilityCB}).

dasize Size for data area

 The data area size allows limiting the area for the data
area. When no data area is passed (UNDEF), the data
area expands whenever more space is needed.

 - 183 -

InitMainBase - Initialize main base

 The function allows initializing a new main base. Main
bases must be created in consecutive order. The first
main base to be crreated would be main base 0, the next
main base 1 etc. A main base 0 is created automatically,
when creating a single resource database.

Creating a mainbase automatically creates a sub-base 0
and a data area 0. Data area size (dasize) and file name
refer to data area 0.

Main bases are generating local identities. The size for
local identities depends on the database type and is 64
bit for large databases and 32 bit for small databases:

 large DB: 0xSSRRRRNNNNNNNNNN

 small DB: 0xRRNNNNNN

'SS' is used internally for the system. RR or RRRR is the
part of the identity that is described by the range of iden-
tities for the main base, i.e. a mainbase generates identi-
ties with range values according to the low and high val-
ue passed (lowEBN, highEBN).

Usually a database has certain limitations to 2 or 4 giga
byte (31 bit). This is sufficiant in many cases but some
sutuations require more space. Allocating a large data-
base (YES) will change the following limitations:

 Data area size: 2 GB to 262144 GB

 number of identities: ca 4 Giga to more than
16,000,000 Giga

 number of mainbases: 252 to 32760

Large databases do not support, however, main bases
splitted in different sub bases and data areas. This fea-
ture has been introduced to overcome database limita-
tions for small databases and is not necessary for large
databases.

Because of different interger presentations on different
platforms databases are platform dependent and must
be converted when changing the platform. It is, however,
also possible to store data in platform independent for-
mat when passing YES forte pindep parameter.

logical DatabaseHandle :: InitMainBase (int16 mbnumber, char

*filename, int16 lowEBN, int16 highEBN, int32

dasize, logical largedb, logical pindep)

- 184 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

mbnumber Main base number

 Mainbase numbers from 0 to 252 (for small databases)
and 0 to 32767 (for large databases) are valid.

filename File name for DataArea file

 The file name is passed as 0-terminated string with a
maximum length of 80 characters. The path may contain
symbolic parameters, which are replaced by the value of
a corresponding system variable or variable set in the
INI-file (e.g.in case of "%ROOT%\base1.rot" - %ROOT%
is replaced by the value of the ROOT system or INI file
variable). The replacement is done only for utility appli-
cations, i.e. a utility control block must have been creat-
ed (see {.r UtilityCB}).

lowEBN First entry number in database

 Low range number for the mainbase. Depending on the
database (small or large) the range number is between 0
and 252 (small DB) or 0 and 32767 (0x7fff) for large da-
tabases.

highEBN Last entry number in database

 High range number for the mainbase. Depending on the
database type the range number is between 0 and 252
(small DB) or 0 and 32767 (0x7fff) for large databases.

dasize Size for data area

 The data area size allows limiting the area for the data
area. When no data area is passed (UNDEF), the data
area expands whenever more space is needed.

largedb Large database option

 The large database option idicates that a large database
is to be defined. This information is stored in the data-
base header after creating the database.

pindep Platform independance option

 The plattform independance option idicates that integer
numbers are to be stored in platform independent for-
mat. This information is stored in the database header
after creating the database.

 - 185 -

InitRecovery - Initialise recovery file

 The function initializes a new recovery file.

logical DatabaseHandle :: InitRecovery (char *recpath, uint16

recnum)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

recpath Recovery path

 The recovery path points to a folder that contains the
recovery files. The folder path is passed as 0-terminated
string. The folder has been defined when creating the
recovery file. ({.r DatabaseHandle.InitRecovery}()).

recnum Numer of recovery file

 Recovery files have an internal number that is generated
when creating the recovery file ({.r DatabaseHan-
dle.InitRecovery}()).

InitSubBase - Initialise sub-base

 The function allows initializing a new sub-base. Sub-
bases must be created in consecutive order. A sub-base
0 is created automatically, when creating the upper main
base, i.e. the next sub-base to be crreated would be
sub-base 1 etc.

Data area size (dasize) and File name refer to data area
0, which is automatically allocated with the sub-base.

logical DatabaseHandle :: InitSubBase (int16 mbnumber, int16

sbnumber, char *filename, int32 dasize)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

mbnumber Main base number

 Mainbase numbers from 0 to 252 (for small databases)
and 0 to 32767 (for large databases) are valid.

sbnumber Sub-base number

 Sub-bases for a main base are numbered contineously.
The highest sub-base number is 255.

- 186 -

filename File name for DataArea file

 The file name is passed as 0-terminated string with a
maximum length of 80 characters. The path may contain
symbolic parameters, which are replaced by the value of
a corresponding system variable or variable set in the
INI-file (e.g.in case of "%ROOT%\base1.rot" - %ROOT%
is replaced by the value of the ROOT system or INI file
variable). The replacement is done only for utility appli-
cations, i.e. a utility control block must have been creat-
ed (see {.r UtilityCB}).

dasize Size for data area

 The data area size allows limiting the area for the data
area. When no data area is passed (UNDEF), the data
area expands whenever more space is needed.

IsLicenced - Is database licensed

 The function returns whether the database has been
licensed successfully. Usually the database will not be
opened when a license is required and the database is
not licensed. When running with disabled license ser-
vices this function can be used to check the license after
opening the database.

logical DatabaseHandle :: IsLicenced ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsShared - Is database shared by several users

 The function returns YES when the database has been
opened in net mode on a local machine or when running
in a client/server environment.

logical DatabaseHandle :: IsShared ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

LocateWorkspace - Locate an existing Workspace

 The function checks whether the worspace with the
passed name exists relatively to the current workspace.

 - 187 -

logical DatabaseHandle :: LocateWorkspace (char *ws_names)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

ws_names Workspace name

 The workspace name is the extension of the current
workspace or database. The database can be consid-
ered as the root for all workspaces. The workspace
name may address a workspace on top of the current
one (simple workspace name) or a workspace on any
higher level by passing a sequence of workspace names
separated by '.'.

Open - Opening a database handle

 The function allows opening a database handle. When
the database handle is already opened it will be closed
before re-opening it.

A database can be opened in local, in client/server mode
or in file server mode. Local mode usually implies exclu-
sive access. When running several applications on a
local machine the database should be opened in file
servermode to provide concurrent access to the data-
base. Client/server mode is suggested when running the
database from different clients on a central server.

a1 - Open database handle

 The function creates a database handle for an opened
dictionary. The database path (cpath) passed to the
function may contain system variable references that are
resolved before opening the database.

The database can be opened in read or write mode (ac-
copt). When running the database in file server mode the
netoption defines whether the database is running ex-
clusive or can be shared by other users. The lo-
cal_resources parameter defines the way the database
is opened.

For opening an older version for the database you may
pass a version number in version_nr.

- 188 -

logical DatabaseHandle :: Open (DictionaryHandle &dict_handle,

char *cpath, PIACC accopt, logical w_netopt,

logical online_version, uint16 version_nr, Re-

sourceTypes local_ressources, char sysenv)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dict_handle Dictionary handle

 The dictionary handle usually refers to an opened dic-
tionary. To check whether a dictionary is opened you
can use the !-operator.

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

w_netopt Multi-user option

 YES indicates that multi-user access is requested. NO
indicates exclusive use of database. Accessing a data-
base in update or write mode, NO guarantees absolute
exclusive access.

online_version Online versioning option

 When this option is set the database will be enabled vor
online versioning. When the option is set to NO the sys-
tem variable ONLINE_VERSION is checked instead.

Default: NO

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 - 189 -

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

sysenv System application

 This option indicates that the application is running as
system application. In this case context functions are
disabled and will not be executed. This option should
never be set in normal applications because this may
lead to logical inconsistence of the database.

d1 - Create new database

 This function allows creating a new database. Usually
creating a database explicitly is not necessary. When,
however, special options as low est and higest local
identifiers (LOID) are to be passed this constructor can
be used.

logical DatabaseHandle :: Open (char *cpath, int16 lowEBN, int16

highEBN, int32 dasize, logical largedb, logi-

cal pindep)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

- 190 -

lowEBN First entry number in database

 Low range number for the mainbase. Depending on the
database (small or large) the range number is between 0
and 252 (small DB) or 0 and 32767 (0x7fff) for large da-
tabases.

highEBN Last entry number in database

 High range number for the mainbase. Depending on the
database type the range number is between 0 and 252
(small DB) or 0 and 32767 (0x7fff) for large databases.

dasize Size for data area

 The data area size allows limiting the area for the data
area. When no data area is passed (UNDEF), the data
area expands whenever more space is needed.

largedb Large database option

 The large database option idicates that a large database
is to be defined. This information is stored in the data-
base header after creating the database.

pindep Platform independance option

 The plattform independance option idicates that integer
numbers are to be stored in platform independent for-
mat. This information is stored in the database header
after creating the database.

d2 - Creates database handle for dictionary

 The function creates a database handle from the dic-
tionary handle.

logical DatabaseHandle :: Open (DictionaryHandle &dict_handle,

PIACC accopt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dict_handle Dictionary handle

 The dictionary handle usually refers to an opened dic-
tionary. To check whether a dictionary is opened you
can use the !-operator.

accopt Access option

 - 191 -

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

OpenRecovery - Open recovery file

 The function opens the recovery file. Usually this is done
automatically when opening the database and should
not be opened explicitely by the user.

logical DatabaseHandle :: OpenRecovery (char *userinfo, int16

uilen)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

userinfo Area for application recovery information

 This area can be provided by the application program
and is expected to contain application data. When writ-
ing an entry to the recovery file the information is copied
to the recovery entrie's user area. The application may
change the conten of the area but not the location as
long as the recovery file is opened.

uilen Length of application data area

 The lenght describes the length of the application data
area provided as serinfo.

OpenWorkspace - Open Workspace

 The function creates or opens an existing workspace.
After opening the workspace all updates are stored in
the opened workspace. When the workspace is used the
first time it is created automatically. When it does al-
ready exist the existing workspace is opened. You can
check whether a workspace exists using the Locate-
Workspace() function, which returns true when the work-
space has already been created.

Usually the workspace file is created in the same folder
as the database. You may, however, pass an explicit
location for the workspace via the ws_path parameter.

logical DatabaseHandle :: OpenWorkspace (char *ws_names, char

*user_name, logical exclusive, char *ws_path)

- 192 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ws_names Workspace name

 The workspace name is the extension of the current
workspace or database. The database can be consid-
ered as the root for all workspaces. The workspace
name may address a workspace on top of the current
one (simple workspace name) or a workspace on any
higher level by passing a sequence of workspace names
separated by '.'.

user_name User name

 When accessing user protected resources as databases
or workspaces, a user must be passed as 0-terminated
string, otherwise NULL.

exclusive

ws_path Physical location for the workspace

 The physical location must be accessible from the serv-
er, not from the client. When running in a client/server
environment the client application should not path loca-
tions directly but rather via symboloc file names (file cat-
alogue).

RecreateExtent - Recreate Index for an extent

 The function repairs the indexes for a corrupted extent
index. The function deletes all indexes for the extent and
parses the database for instances with the type of the
extent. The function works correct only, when all in-
stances in the database belong to the extent.

logical DatabaseHandle :: RecreateExtent (char *extnames)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

extnames Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

 - 193 -

operator bool - Database handle opened?

 The function returns YES (true) when the database jan-
dle is opened and NO (false) when the databse is not
opened or when an error had occured while constructing
the database handle.

NOTYPE DatabaseHandle :: operator bool () const

Return value

operator!= - Compare database handles

 The function returns true (YES) when the database han-
dles refer to different database access blocks and false
(NO) otherwise.

i00

logical DatabaseHandle :: operator!= (DatabaseHandle

&dbhandle_ref)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

dbhandle_ref

i01

logical DatabaseHandle :: operator!= (DBObjectHandle

&obhandle_ref)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

obhandle_ref

operator= - Assignment operator

 The operator assigns the database access block of the
passed database handle to the current database handle.
Before the current database handle is closed.

i00

DatabaseHandle &DatabaseHandle :: operator= (const DatabaseHan-

dle &dbhandle_refc)

- 194 -

Return value This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

dbhandle Pointer to database handle

 This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

i01

DatabaseHandle &DatabaseHandle :: operator= (ACObject *acobject

)

Return value This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

acobject

~DatabaseHandle - Destructur

 The destructor closes the database handle. Closing the
database handle will reduce the use count. The internal
resources, the database access block is removed, when
the use count becomes 0, i.e. when the last database
handle referring to this resource is closed or destroyed.

 DatabaseHandle :: ~DatabaseHandle ()

 - 195 -

DictionaryHandle - Dictionary Handle

 The dictionary handle is used for providing schema defi-
nitions from the dictionary. The dictionary creates inter-
nal images from the externally stored schema defini-
tions. These internal images ({.r DBStructDef}) can be
provided by means of dictionary functions.

Because the dictionary is a database handle {.r DBHan-
dle} you can access schema information also directly via
PI functions.

BaseType - Returns internal number for elementary types

 The function returns the internal number for elementary
types (STRING, CHAR, INT,...). If the type name
(strnames) passed is not a supported basic type the
function returns UNDEF.

int16 DictionaryHandle :: BaseType (char *strnames)

Return value For user-defined types (structures or enumerations) the
internal type identification (number) is returned. If the
type is unknown the function returns UNDEF (0). For
elementary types (basic types -> {.r DataTypes}) the
value is negative.

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

CheckExpression - Check expression syntax

 The function terurns YES when the expression is invalid
or no valid object handle has been passed.

logical DictionaryHandle :: CheckExpression (char *expression,

DBObjectHandle &dbobj_handle, char *clsnames)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

expression OQL expression

- 196 -

 An OQL expression defines a condition according to the
OQL syntax. OQL expressions must always terminate
with ';'. The OQL-Expression is passed as 0-terminated
string.

dbobj_handle

clsnames

CopyCodeset - Copy enumeration

 The function copies an enumeration (Codeset) from one
dictionary to another.

logical DictionaryHandle :: CopyCodeset (DictionaryHandle

&srce_dicthandle, char *strname, char

*newnames, PIREPL db_replace, logical retain-

SID, logical retain_schemav)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

srce_dicthandle

strname Type name

 The type name is passed as 0-terminated string or as
buffer with maximum 40 characters filled with trailing
blanks.

newnames New name for an extent or type

 The new name must be passed only if the type is to be
renamed. The name is passed as 0-terminated string or
as buffer with trailing blanks and a maximum length of
40 characters.

db_replace

retainSID Retain internal type numbers

 If this option is set to YES the function trys to re-use the
internal type number from the source dictionary. If this is
not possible the type gets a new number in the target
dictionary. This option is used normally only when copy-
ing a complete dictionary.

retain_schemav

 - 197 -

CopyExtentDef - Copy extent definition

 The function copies an extent definition from one dic-
tionary to another.

logical DictionaryHandle :: CopyExtentDef (DictionaryHandle

&srce_dicthandle, char *extentname, char

*newnames, char *targ_struct, logical transac-

tion, logical retain_schemav)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

srce_dicthandle

extentname Extent name

 The name is passed as 0-terminated string or as buffer
with trailing blanks and a maximum length of 40 charac-
ters.

newnames New name for an extent or type

 The new name must be passed only if the type is to be
renamed. The name is passed as 0-terminated string or
as buffer with trailing blanks and a maximum length of
40 characters.

targ_struct Target type

 The target type must be passed when the type name for
the extent has been changed (e.g. because of a
copy/rename operation). The name is passed as 0-
terminated string or as buffer with trailing blanks and a
maximum length of 40 characters.

transaction Transaction option

 When passing YES the function creates a transaction
while copying the extent definition.

retain_schemav

CopyStructure - Copy structure definition

 The function copies a structure definition from one dic-
tionary to another.

logical DictionaryHandle :: CopyStructure (DictionaryHandle

&srce_dicthandle, char *strname, char

*newnames, char *topname, PIREPL db_replace,

logical retainSID, logical retain_schemav)

- 198 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

srce_dicthandle

strname Type name

 The type name is passed as 0-terminated string or as
buffer with maximum 40 characters filled with trailing
blanks.

newnames New name for an extent or type

 The new name must be passed only if the type is to be
renamed. The name is passed as 0-terminated string or
as buffer with trailing blanks and a maximum length of
40 characters.

topname Name of top-type

 When calling the function this field should contain the
name of the type to be copied. When processing recur-
sive copy operations the name is used to avoid recursion
while copying.

db_replace

retainSID Retain internal type numbers

 If this option is set to YES the function trys to re-use the
internal type number from the source dictionary. If this is
not possible the type gets a new number in the target
dictionary. This option is used normally only when copy-
ing a complete dictionary.

retain_schemav

CopyType - Copy type definition

 The function copies a type definition from one dictionary
to another.

logical DictionaryHandle :: CopyType (DictionaryHandle

&srce_dicthandle, char *strnames, char

*newnames, char *topname, PIREPL db_replace,

logical retainSID, logical transaction, logi-

cal retain_schemav)

 - 199 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

srce_dicthandle

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

newnames New name for an extent or type

 The new name must be passed only if the type is to be
renamed. The name is passed as 0-terminated string or
as buffer with trailing blanks and a maximum length of
40 characters.

topname Name of top-type

 When calling the function this field should contain the
name of the type to be copied. When processing recur-
sive copy operations the name is used to avoid recursion
while copying.

db_replace

retainSID Retain internal type numbers

 If this option is set to YES the function trys to re-use the
internal type number from the source dictionary. If this is
not possible the type gets a new number in the target
dictionary. This option is used normally only when copy-
ing a complete dictionary.

transaction Transaction option

 When passing YES the function creates a transaction
while copying the extent definition.

retain_schemav

CreateEnum - Create new enumeration

 he function creates a new enumeration. The dictionary
must be opened in write mode.

When defining a new enumeration in a dictionary it has
to be created before it can be opened for adding the
enumeration items.

- 200 -

logical DictionaryHandle :: CreateEnum (char *enum_name, char

*basetype)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

enum_name Enumeration name

 The enumeration name is passed as 0-terminated string
or as buffer with trailing blanks and a maximum length of
40 characters.

basetype

CreateTempExtent - Create temporary extent

 A temporary extent can be created for storing results of
a qeuery (e.g. a selection) within an application. Tempo-
rary extents are created in main storage or in a tempo-
rary database and are available as long as the database
handle is opened. They will be removed automatically
when closing the database handle.

When a temporary extent has been created once, you
can open any number of property handles for accessing
the extent.

You can define an extent for a structure definition de-
fined in the external dictionary by referring to the tsruc-
ture name) or by an internal structure definition that has
been created by the application and is referenced by the
field definition passed to the function.

ci

char *DictionaryHandle :: CreateTempExtent (char *strnames, char

*extnames_w, char *key_name_w, char

*baseexts_w, logical weak_opt_w, logical

own_opt_w)

Return value The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

strnames Structure name

 - 201 -

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

extnames_w Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

key_name_w Key name for conversion

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks. If no key name is passed (NULL) the sort key
according to the selected sort order is used instead,

baseexts_w Name for base extent

 A base extent or base collection can be passed that de-
fines a superset for the temporary extent. The extent
name is passed as 0-terminated string with maximum 40
characters.

weak_opt_w Weak-typed option

 This option must be true (YES) when a collection may
refer to instances of differet types, wich are based on the
same base structure.

own_opt_w Owning collection

 This option must be set to true (YES) if the collection
owns the instances it is referring to. In this case the col-
lection may not refer to instances from other collections.
Removing instances from an owning collection will result
in deleting the instance completely.

i01

char *DictionaryHandle :: CreateTempExtent (DBFieldDef

*field_def, char *extnames_w)

Return value The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

field_def Property definition

 The property defintion contains the metadata for the ref-
erenced property instance..

- 202 -

extnames_w Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

DeleteEnum - Delete enumeration definition

 This function deletes an enumeration definition from the
external dictionary.

logical DictionaryHandle :: DeleteEnum (char *enum_name)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

enum_name Enumeration name

 The enumeration name is passed as 0-terminated string
or as buffer with trailing blanks and a maximum length of
40 characters.

DictionaryHandle - Create dictionary handle

 Usually the dictionary is created as local dictionary, i.e.
the external dictionary must be provided in the local en-
vironment.

When the application wants to refer to databases on a
server the dictionary has to be opened as server diction-
ary as well using the external dictionary on the server. In
this case an ODABAClient with an opened connection
has to be passed. When the connection is not opened
the system tries to open the dictionary as local diction-
ary.

ci0

 DictionaryHandle :: DictionaryHandle

(ODABAClient &odaba_client, char *cpath, PIACC

accopt, logical w_netopt, uint16 version_nr,

ResourceTypes local_ressources, char sysenv)

odaba_client ODABA Client Handle

 The ODABA client handle can be passes as connectet
or ea empty handle.

 - 203 -

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

w_netopt Multi-user option

 YES indicates that multi-user access is requested. NO
indicates exclusive use of database. Accessing a data-
base in update or write mode, NO guarantees absolute
exclusive access.

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

local_ressources Resource type

 Depending on the resource type the database or diction-
ary is opened on the client or server side.

RES_automatic

When a connection is opened to the server the diction-
ary is opened on the server side when passing a sym-
bolic database path (like %DB_PATH%). When passing
a dictionary path the dictionary is opened on the client
side. When no connection is opened the dictionary or
database will be opened on the client side.

RES_local

The dictionary or database will be opened on the client
machine in any case.

RES_server

The dictionary or database will be opened on the server
machine side in any case.

sysenv System application

- 204 -

 This option indicates that the application is running as
system application. In this case context functions are
disabled and will not be executed. This option should
never be set in normal applications because this may
lead to logical inconsistence of the database.

i02

 DictionaryHandle :: DictionaryHandle (

)i03

 DictionaryHandle :: DictionaryHandle

(Dictionary *_dictionary)

_dictionary

i04

 DictionaryHandle :: DictionaryHandle

(const DictionaryHandle &dictionary_refc)

dicthdl

i1

 DictionaryHandle :: DictionaryHandle

(DatabaseHandle &db_handle)

db_handle Pointer to database handle

 This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

GetExtentDef - Get extent definition

 The function returns the extend definition for the passed
extent name from the internal dictionary. When the ex-
tent definition has not been found in the internal diction-
ary the function will not read the extent definition from
the external dictionary (see ProvideExtendDef()).

DBExtend *DictionaryHandle :: GetExtentDef (char *extname)

Return value

extname Extent name

 - 205 -

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

GetID_SIZE - Size for identifying names in ODABA

 ODABA has a unique size for identifying names. Since
the identifier size may change between different ODABA
versions this function returns the identifier size for the
current version.

int16 DictionaryHandle :: GetID_SIZE ()

Return value Size of the instance or property area.

GetTempName - Get unique name for temporary resource

 The function provides a unique internal name that can
be used for creating temporary extents or other re-
sources.

char *DictionaryHandle :: GetTempName (char *extnames_w)

Return value The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

extnames_w Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

IsBasicType - Is type an elementary type?

 The function returns YES when the passed type is one
of the elementary ODABA data types.

logical DictionaryHandle :: IsBasicType (char *typenames)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

typenames Type name

 The type name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

- 206 -

ProvideExtentDef - Provide extent definition

 The function returns the extend definition for the passed
extent name from the internal dictionary. When the ex-
tent definition has not been found in the internal diction-
ary the function will provide the extent definition in the
internal dictionary by reading it from the external diction-
ary.

DBExtend *DictionaryHandle :: ProvideExtentDef (char *extnames)

Return value

extnames Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

ProvideStructureDef - Provide structure definition from internal
or external dictionary

 The function returns the structure definition for the
passed structure name from the internal dictionary.
When the structure definition has not been found in the
internal dictionary the function will provide the extent
definition in the internal dictionary by reading it from the
external dictionary.

DBStructDef *DictionaryHandle :: ProvideStructureDef (char

*strnames)

Return value The structure definition is provided in the internal format
as pointer to a DBStructDef object.

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

operator bool - Dictionary opened

 The function returns YES (true) when the dictionary
handle is opened and NO (false) when the dictionary is
not opened or when an error had occured while con-
structing the dictionary handle.

NOTYPE DictionaryHandle :: operator bool () const

Return value

 - 207 -

operator= -

DictionaryHandle &DictionaryHandle :: operator= (const Diction-

aryHandle &dictionary_refc)

Return value

dicthandle

operator== - Compare dictionary handles

 The function returns YES (true) when the dictionary
handles compared are identical.

logical DictionaryHandle :: operator== (const DictionaryHandle

&dictionary_refc)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

dict_handle Dictionary handle

 The dictionary handle usually refers to an opened dic-
tionary. To check whether a dictionary is opened you
can use the !-operator.

~DictionaryHandle - Destructor

 DictionaryHandle :: ~DictionaryHandle (

)

- 208 -

Error - General Error object

 The error object is used to store and pass error infor-
mation to the application. Errors are identified by error
class and eror number. In addition the class and function
name detecting the problem and a short error explana-
tion can be provided. Moreover, an error may include
upto 6 context depending error variables that can be
displayed in the error message.

Usually error messages are written to a log file (error.lst)
which is stored in a folder addressed by the TRACE en-
vironment or ini-file variable. It is, however, also possible
to display errors on the terminal.

Usually errors should be reset in all functions that may
signal an error. Otherwise the calling function may not
be able to determine whether the error signaled is an old
error or has just been signaled in the called function.
This strategy requires, on the other hand, that signaled
errors have to be saved when other functions are called
in the error handling thet might generate errors again,
since those functions will reset the error. You can use
the Copy() function to save the error.

The way errors are presented in the application depends
on the error handler installed (ErroerHandle). Usually
errors are written to the console output for console appli-
cations and shown in a message box for windows appli-
cations.

CheckError - Check error state

 The function checks whether an error is set in the error
object and returns the error number, if so.

int32 Error :: CheckError ()

Return value

Copy - Copy error

 The function copies the error object to save relevant er-
ror information. You can use the function to save error
information that might be destroyed when calling other
functions.

void Error :: Copy (Error &err_obj)

 - 209 -

err_obj Error object

 The error object contains information about the last error
detected.

CreateExceptions - Throw exception

 The function enables exception throwing, i.e. an excep-
tion is thrown, when an error is signaled. Usully, no ex-
ception is thrown.

void Error :: CreateExceptions (logical exceptions)

exceptions Trow exception

 When the option is set to YES (true) exceptions are
trown.

DisplayMessage - Dispaly message

 The function allows displaying a message for a signaled
or passed error code. Depending on the error heandle
set for the error the error is written to the console or dis-
played on the terminal.

i0 - Display user error

 The function displays an error passed by the user. The
passed error variables are inserted for the place holders
in the error message definition. When the error code
passed is 0 the last signaled error code is used instead.

logical Error :: DisplayMessage (const int16 err_code, char

*errvar1, char *errvar2, char *errvar3, char

*errvar4, char *errvar5, char *errvar6)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

err_code Error code

 The error code passed must be a defined error code.

errvar1 First error variable

- 210 -

 The text for the first error variable will replace the place
holder %1 or the first occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar2 Second error variable

 The text for the second error variable will replace the
place holder %2 or the seond occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar3 Third error variable

 The text for the third error variable will replace the place
holder %3 or the third occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar4 Fourth error variable

 The text for the fourth error variable will replace the
place holder %4 or the fourth occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar5 Fifth error variable

 The text for the fifth error variable will replace the place
holder %5 or the fifth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar6 Sixth error variable

 The text for the sixth error variable will replace the place
holder %6 or the sixth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

i1 - Display current error

 Usually error messages are written to the error log, only.
This function shows the error in the given application
context (console or message box).

logical Error :: DisplayMessage ()

 - 211 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

i2 - Display application error with defined error database

 The function displays an error passed by the user. The
passed error variables are inserted for the place holders
in the error message definition. When the error code
passed is 0 the last signaled error code is used instead.
The function retrieves the error message from the error
source (usually an error database) passed to the error
calling the ErrorHandle::GetError() function.

logical Error :: DisplayMessage (void *error_source, const int16

err_code, char *errvar1, char *errvar2, char

*errvar3, char *errvar4, char *errvar5, char

*errvar6)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

error_source

err_code Error code

 The error code passed must be a defined error code.

errvar1 First error variable

 The text for the first error variable will replace the place
holder %1 or the first occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar2 Second error variable

 The text for the second error variable will replace the
place holder %2 or the seond occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar3 Third error variable

 The text for the third error variable will replace the place
holder %3 or the third occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

- 212 -

errvar4 Fourth error variable

 The text for the fourth error variable will replace the
place holder %4 or the fourth occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar5 Fifth error variable

 The text for the fifth error variable will replace the place
holder %5 or the fifth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar6 Sixth error variable

 The text for the sixth error variable will replace the place
holder %6 or the sixth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

i3 -

 The function retrieves the error message from the error
source (usually an error database) passed to the error
calling the ErrorHandle::GetError() function and displays
the message in the application context. The way the er-
ror message is displayed depends on the ErrorHan-
dle::DisplayMessage() function of the error handle asso-
ciated with the error.

logical Error :: DisplayMessage (void *error_source)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

error_source

Error - Constructor

 The function constructs an error object. The function
does not set an error handle. This must be done explicit-
ly by the application, which can set an application specif-
ic error handle.

 - 213 -

i0 - Application error

 The constructor creates an application or subsystem
error that can be used to handle signaled errors in the
application.

 Error :: Error (int16 metacode, char

*pid, char *errclass, char *ttext)

metacode Meta code for the error

 When using errors in an hirarchical application the meta
error indicates which system has caused an error. Thus,
e.g. a database error is passed to the application error
with a default error code for indicating a "database er-
ror". In this case more detailed information can be re-
trieved from the last set database error, which is dis-
played than instead of the more general database error.
Usually application errors will not define a meta-code.
Only when creating a subsystem with a separate error
object a meta code has to be assigned for errors in this
sub-system and handles by the error handle of the sub
system.

pid

errclass Error class

 Errors are grouped in error classes. An error class is
defined for each subsystem or application. In database
applications the error class defines the extent that con-
tains the error descriptions for all errors of the applica-
tion or subsystem.

i1 - Dummi constructor

 The constructor creates an empty error object.

 Error :: Error ()i2 - Copy Constructor

 The function copies the information of the passed error
object into the newly created error object and can be
used instaed of the Copy() function.

 Error :: Error (Error &err_obj)

err_obj Error object

 The error object contains information about the last error
detected.

- 214 -

GetDecision - Ask for user decision

 The function creates an message from the error code
and the passed error variables and generates a decision
that is displayed in the specific application context (con-
sole message for console applications and decision box
for windows applications. To execute the function suc-
cessfully an error handle should be set. If not, a simple
error handle will be constructed.

i0 - Display application decision

 The function displays a decision forced by the applica-
tion. The passed error variables are inserted for the
place holders in the error message definition. The deci-
sion text is taken from the eror description for the passed
error code as defined in the error source set for the ac-
tive arror handle.

logical Error :: GetDecision (const int16 err_code, char

*errvar1, char *errvar2, char *errvar3, char

*errvar4, char *errvar5, char *errvar6)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

err_code Error code

 The error code passed must be a defined error code.

errvar1 First error variable

 The text for the first error variable will replace the place
holder %1 or the first occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar2 Second error variable

 The text for the second error variable will replace the
place holder %2 or the seond occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar3 Third error variable

 - 215 -

 The text for the third error variable will replace the place
holder %3 or the third occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar4 Fourth error variable

 The text for the fourth error variable will replace the
place holder %4 or the fourth occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar5 Fifth error variable

 The text for the fifth error variable will replace the place
holder %5 or the fifth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar6 Sixth error variable

 The text for the sixth error variable will replace the place
holder %6 or the sixth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

i1 - Display predefined decision

 The function displays a decision with the error text set in
the text field of the error object. This function shows the
decision in the given application context (console or
message box).

logical Error :: GetDecision ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

i2 - Display application decision with different error source

 The function displays a decision forced by the applica-
tion. The decision text is constructed from the error defi-
nition read from the passed error source replacing the
place holders by the passed error variables.

- 216 -

logical Error :: GetDecision (void *error_source, const int16

err_code, char *errvar1, char *errvar2, char

*errvar3, char *errvar4, char *errvar5, char

*errvar6)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

error_source

err_code Error code

 The error code passed must be a defined error code.

errvar1 First error variable

 The text for the first error variable will replace the place
holder %1 or the first occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar2 Second error variable

 The text for the second error variable will replace the
place holder %2 or the seond occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar3 Third error variable

 The text for the third error variable will replace the place
holder %3 or the third occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar4 Fourth error variable

 The text for the fourth error variable will replace the
place holder %4 or the fourth occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar5 Fifth error variable

 The text for the fifth error variable will replace the place
holder %5 or the fifth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar6 Sixth error variable

 - 217 -

 The text for the sixth error variable will replace the place
holder %6 or the sixth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

i3 - Display decision with different error source

 The function displays a decision forced by the applica-
tion. The decision text is constructed from the error defi-
nition read from the passed error source replacing the
place holders by the error variables set in the error
(err_var1... 6).

logical Error :: GetDecision (void *error_source)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

error_source

GetErrorHelpID - Get help context id

 The function returns a help context id that can be used
to call an online help topic associated with the error.

int32 Error :: GetErrorHelpID ()

Return value

GetErrorText - Get Error text

 The function creates an error message from the error
definition read from the passed error source replacing
the place holders by the passed error variables.

char *Error :: GetErrorText (void *error_source, const int16

err_code, char *errvar1, char *errvar2, char

*errvar3, char *errvar4, char *errvar5, char

*errvar6)

Return value The error text is passed as 0-terminated string with a
maximum length of 500 characters.

error_source

err_code Error code

 The error code passed must be a defined error code.

- 218 -

errvar1 First error variable

 The text for the first error variable will replace the place
holder %1 or the first occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar2 Second error variable

 The text for the second error variable will replace the
place holder %2 or the seond occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar3 Third error variable

 The text for the third error variable will replace the place
holder %3 or the third occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar4 Fourth error variable

 The text for the fourth error variable will replace the
place holder %4 or the fourth occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar5 Fifth error variable

 The text for the fifth error variable will replace the place
holder %5 or the fifth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar6 Sixth error variable

 The text for the sixth error variable will replace the place
holder %6 or the sixth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

GetText - Get error text

 The function returns the error text currently set in the
error objkect.

char *Error :: GetText ()GetTitle - Get title

 The function returns the eror title for the error class.

char *Error :: GetTitle ()Initialize - Initialize error

 - 219 -

 The function initializes an error object.

i0 - Reset error object

 The function will reset all attributes in the error objects to
its initial values.

void Error :: Initialize ()i01 - Initialize error object

 The function wil reset the orror specification with the pa-
rameters passed.

void Error :: Initialize (int16 metacode, char *pid, char

*errclass, char *ttext)

metacode Meta code for the error

 When using errors in an hirarchical application the meta
error indicates which system has caused an error. Thus,
e.g. a database error is passed to the application error
with a default error code for indicating a "database er-
ror". In this case more detailed information can be re-
trieved from the last set database error, which is dis-
played than instead of the more general database error.
Usually application errors will not define a meta-code.
Only when creating a subsystem with a separate error
object a meta code has to be assigned for errors in this
sub-system and handles by the error handle of the sub
system.

pid

errclass Error class

 Errors are grouped in error classes. An error class is
defined for each subsystem or application. In database
applications the error class defines the extent that con-
tains the error descriptions for all errors of the applica-
tion or subsystem.

InsertStatField - Insert status line field

 The function creates a field in the status line for display-
ing information from the error object in the status line.
The behaviour of the statusline depends on the handling
in the error handle. The default error handle does not
support staus line information.

- 220 -

void Error :: InsertStatField ()RemoveStatField - Remove
user field from the status line

 The function removes a statusline field that had been
inserted before using InserStatField().

void Error :: RemoveStatField ()Reset - Reset error text

 The function resets the error text and the error type, but
not the error code. For resetting the error object call Re-
setError().

void Error :: Reset ()ResetAllErrors - Reset all errors

 The function resets the erors for all subsystems for the
given thread.

void Error :: ResetAllErrors ()ResetError - Reset error ob-
ject

 The function resets the current error settings. This func-
tion should be called in any function that might set an
error.

void Error :: ResetError ()SetError - Signal error

 The function signals an error for the error object. Usually
the error is recorded in a log file (error.lst).

void Error :: SetError (const int16 err_code, char *obj, char

*mod)

err_code Error code

 The error code passed must be a defined error code.

obj Object or class name

 The class name of the function that has detected the
error is passed as 0-terminated string.

mod Module or function

 The module or function name where the error was de-
tected is passed as 0-terminated string.

 - 221 -

SetErrorVariable - Set error variable

 The function is used to set an error variable before sig-
naling an error (-> SetError()). The value of this error
variable will replace the place holder according to the
variable number in the error description text (e.g. setting
error variable 2 will replace the place holder %2 or the
second occurence of %s in the error text).

void Error :: SetErrorVariable (int8 varnum, char *vartext,

int16 varlen)

varnum Variable number

 Number of the error variable to be set.

vartext Variable text

 The text for the variable is passed as 0-terminated string
with a maximum length of 80.

varlen Variable length

 When the variable text is not passed as 0-terminated
string the length defines the length for the string passed.

SetHandle - Set error handle

 The function allows setting an application specific error
handle for the error object.

void Error :: SetHandle (ErrorHandle *error_hdl)

error_hdl Error handle

 An error handle is usually passed as application specific
error handle that provides application or subsystem spe-
cific functions for displaying errors.

SetLanguage - Select language for error messages

 The function allows setting a language for displaying
errors when the associated error handle supports multi-
lingual error messages. The exact language definitions
are specific for the associated handler, however, the
English language name is used in most cases.

void Error :: SetLanguage (char *err_lang)

err_lang Error language

- 222 -

 The language is passed as 0-terminated string. The ex-
act language definitions are specific for the associated
handler, however, the English language name is used in
most cases.

SetSource - Set error resource

 When supporting an error resource that contains the
error definitions this can be associated with the error
using this function. The type of the error resource de-
pends on the eror handle associated with the error. Usu-
ally, database applications pass a database handle for a
database that contains an extent with the error class
name that stores the error definitions.

void Error :: SetSource (void *error_source)

error_source

SetStatField - Set value in status line

 When a status field has been inserted in the status line
of the application (-> InsertStatField()), the function will
send the passed string value to the status line by means
of the error handle.

void Error :: SetStatField (char *string)

string String area

 Pointer to the 0-terminated string area.

SetStatText - Set status line text

 The function will send the passed string value to the de-
fault text field of the status line by means of the error
handle. This function does not require a application de-
fined field in the status line as provided with InsertStat-
Field().

void Error :: SetStatText (char *string)

string String area

 Pointer to the 0-terminated string area.

SetText - Set text

 The function sets the text with an error message in the
error object text field.

 - 223 -

void Error :: SetText (char *err_text)

err_text Error text

 The error text is passed as 0-terminated string with a
maximum length of 500 characters.

SetTitle - Set error object title

 The function changes the title for the error object class.

void Error :: SetTitle (char *ttext)SetTracePath - Set path
for error-log file

 The function changes the path for the current error log-
file. The default ErrorHandle records all errors in a file
error.lst which is located in a folder addressed by the
path defined in the environment or system variable
TRACE. The function will change the settings of this sys-
tem variable.

void Error :: SetTracePath (char *cpath)

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

SetType - Set eror type

 The function sets the passed error type. The error type is
evaluated by the associated error handle for displaying
error messages in an appropriate way.

void Error :: SetType (char err_type)

err_type

SetupErrText - Setup error text

 The function replaces the place holders in the eror text
with the error variables set in the error object.

void Error :: SetupErrText (void *error_source)

error_source

- 224 -

TraceMessage - Write message to log-file

 The function allows writing a message to the log file
without signaling an error. The error variables passed
are replaced in the message befor writing the message
to the log-file.

void Error :: TraceMessage (char *errvar1, char *errvar2, char

*errvar3, char *errvar4, char *errvar5, char

*errvar6)

errvar1 First error variable

 The text for the first error variable will replace the place
holder %1 or the first occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar2 Second error variable

 The text for the second error variable will replace the
place holder %2 or the seond occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar3 Third error variable

 The text for the third error variable will replace the place
holder %3 or the third occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar4 Fourth error variable

 The text for the fourth error variable will replace the
place holder %4 or the fourth occurence of %s in the
error message. The error variable is passed as 0-
terminated string with a maximum length of 80.

errvar5 Fifth error variable

 The text for the fifth error variable will replace the place
holder %5 or the fifth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

errvar6 Sixth error variable

 The text for the sixth error variable will replace the place
holder %6 or the sixth occurence of %s in the error mes-
sage. The error variable is passed as 0-terminated string
with a maximum length of 80.

 - 225 -

operator= - Assign error object

 The function assigns all attributes of the error object
passed to the current error object. It can be used instaed
of the Copy() function.

Error &Error :: operator= (Error &err_obj)

Return value The error object contains information about the last error
detected.

err_obj Error object

 The error object contains information about the last error
detected.

~Error - Destructor

 The function destroys the error object.

 Error :: ~Error ()

- 226 -

EventHandler - Event Handler Class

 The Event Handler Class is a base class for supporting
writing event handlers. It provides some basic functional-
ity for setting and calling event handlers for handling
server events.

You may derive your own handler classes from
EventHandler to provide handler functions for server
events. You may overload the handler functions In-
stanceEventHandler() and PropertyEventHandler() for
providing your application specific event handling.

The event handler allows handling instance, property
(collection) or local events. Instance and property events
are client server events that are generated, when an
instance or collection changes. Local events are those
events, which are usually handled in the instance or
property context. You may, however, set event handler
for local events for a specific property handle, which al-
lows overwriting or expanding context functions.

ActivateProcessEventHandler - Activate process event handlers

 The function activates the event handlers for process
events. When not activating process event handling pro-
cess events will not passed to the application.

void EventHandler :: ActivateProcessEventHandler (

)ActivateServerEventHandler - Activate
server event handlers

 The function activates the event handlers for server
events. When not activating server event handling pro-
cess events will not passed to the application.

void EventHandler :: ActivateServerEventHandler (

)EventHandler - Konstruktor

 Constructing an event handler class instance for the
property handle passed to the function. The constructor
sets the property event handler as well as the instance
event handler. The property handle is registered for re-
ceiving server events (-> RegisterHandle()).

 EventHandler :: EventHandler (Proper-

tyHandle &prop_hdl)

prop_hdl Property Handle

 - 227 -

 Is a reference to an (usually) opened property handle.

InstanceEventHandler - Instance event handler

 The instance event handler has to be overloaded when
specific handling for instance events as updated or de-
leted has to be provided. The type of event is passed via
the event_id. The objid refers to the instance identity of
the updated instance.

When a notification handler is implemented in the con-
text class, it will be called after calling the event handler
set for the ptoperty handle.

logical EventHandler :: InstanceEventHandler (CSA_Events

event_id, int32 objid)

Return value When this value is true the function will continue, other-
wise the processing terminates.

event_id Ivend type

 The event type defines the type of the passed event.

objid Local object identity (LOID)

 The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

ProcessInstanceHandler - Process Instance Event Handler

 The process event handler has to be overloaded when
specific handling for process events (as update or delete
instance) has to be provided. The type of event is
passed via the intevent parameter.

The function should return true (YES) to pre-process
handlers to abort the process.

logical EventHandler :: ProcessInstanceHandler (DB_Event inte-

vent)

Return value When this value is true the function will continue, other-
wise the processing terminates.

intevent Event identifier

 The event identifier is an internal number that is defined
for typical events.

- 228 -

ProcessPropertyHandler - Process Property Event Handler

 The process event handler has to be overloaded when
specific handling for process events (as read or change
selection) has to be provided. The type of event is
passed via the intevent parameter.

The function should return true (YES) to pre-process
handlers to abort the process.

logical EventHandler :: ProcessPropertyHandler (DB_Event inte-

vent)

Return value When this value is true the function will continue, other-
wise the processing terminates.

intevent Event identifier

 The event identifier is an internal number that is defined
for typical events.

PropertyEventHandler - Property event handler

 The property event handler has to be overloaded when
specific handling for property (collection) events as up-
dated or deleted has to be provided. The type of event is
passed via the event_id. The objid refers to the index
identity of the updated collection.

When a notification handler is implemented in the con-
text class, it will be called after calling the event handler
set for the ptoperty handle.

logical EventHandler :: PropertyEventHandler (CSA_Events

event_id, int32 objid)

Return value When this value is true the function will continue, other-
wise the processing terminates.

event_id Ivend type

 The event type defines the type of the passed event.

objid Local object identity (LOID)

 The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

 - 229 -

~EventHandler - Destructor

 Destructing the class will reset the handler in the proper-
ty handle. The property handle is unregistered from re-
ceiving server events (-> UnregisterHandle()).

 EventHandler :: ~EventHandler ()

- 230 -

EventLink - Event Link

 This is a function link object for handling events. The
function link stores a pointer to the handler class in-
stance and the function to be called.

The following status indicators are used:

stsini - handler is active and will be executed

EventLink - Constructor

 The constructor creates an event link that defines a link
to an event handler.

i0 - Event link

 This constructor creates an event link. Instead of using
the constructor directly the macro

 ELINK(instptr, clsname, funcname)

should be used. This allows easily defining an event link
passing the instance pointer, the class name and the
handler function name.

The calling conventions for thr linked function are as

 logical vcls::handler(CSA_Events event, long loid,
PropertyHandle &ph)

 EventLink :: EventLink (vcls *vclsptr,

EVTP evtptri)

vclsptr Virtual class pointer

 The virtual class pointer refers to any type of class de-
rived from the virtual class.

evtptri Event handler pointer

 The event handler pointer is a function pointer as:

 logical vcls::EVTP(CSA_Events, long, PropertyHandle
&).

i01 - Dummy constructor

 EventLink :: EventLink ()i02

 - 231 -

 EventLink :: EventLink (vcls *vclsptr,

EVTPL evtptril)

vclsptr Virtual class pointer

 The virtual class pointer refers to any type of class de-
rived from the virtual class.

evtptril Event handler pointer for local events

 The event handler pointer is a function pointer as:

 logical vcls::EVTPL(DB_Events, PropertyHandle &).

IsActive -

logical EventLink :: IsActive ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

~EventLink - Destruktor

 EventLink :: ~EventLink ()

- 232 -

Instance - Instance Handle

 Instance handles are used to pass and return structured
database instances. Instead of an instance handle a
(void *) area can be passed, that is automatically con-
verted into an instance handle. The instance area is al-
located and freed by the application.

 - 233 -

Key - Key Handle

 Key handles are used to pass and return keys. Instead
of a key handle a (char *) area can be passed, that is
automatically converted into a key. The key area is allo-
cated and freed by the application.

GetData - Provide key area

 The function returns the key instance area as (char *)
pointer.

char *Key :: GetData ()

Return value The key area is structured according to the key definition
(key smcb).

Key - Konstruktor

 A key handle is contructed with the key area passed to
the handle.

i0

 Key :: Key (char *keyarea)

keyarea Key area

 The key area is structured according to the key definition
(key smcb).

i01

 Key :: Key ()SetData - Set key area

 The function allows assigning a new key area to the key
handle.

char *Key :: SetData (char *keyarea)

Return value The key area is structured according to the key definition
(key smcb).

keyarea Key area

 The key area is structured according to the key definition
(key smcb).

- 234 -

operator char* - Type conversion

 The operator supports implicite type conversion from
(char *) pointers into key handles.

NOTYPE Key :: operator char* ()

Return value

operator& - Adress operator

 The operator returns the key area.

char *Key :: operator& ()

Return value The key area is structured according to the key definition
(key smcb).

operator= - Assignment operator

 The operator allows assigning a new key area from the
passed key handle to the key handle.

Key &Key :: operator= (const Key &key_refc)

Return value Reference to a key handle.

key_ref Kea reference

 Reference to a key handle.

 - 235 -

ODABAClient - ODABA client

 To run client server applications you must create a
ODABA client instance. To support several connections
to different servers you can create one or more clients
within your application.

When connecting to different servers you must create
one client for each server. You can open several clients
in an application. The first client, however, is considered
to be the main client. The main client should be the last
client closed in an application. After closing the main
client you can open another main client. Since there is
no hierarchy defined between clients the system will not
check

The main client registers the process and activates the
error log file. It opens the system database for providing
error messages and the data catalogue if one has been
specified in the system environment (see ODABAClient
constructor). These information are described in an ini-
file, which can be passed to the client.

For initializing and registring the process properly a cli-
ent should be created also for locally running applica-
tions.

ActivateGUIMessages - Activate GUI-Messages

 For console applications messages will be sent to the
console, only. When messages should be displayed in
GUI message boxes as well you can use the Activate
GUIMessages() function to enable this feature.

void ODABAClient :: ActivateGUIMessages ()Connect - Connect
to server

- 236 -

 This function establishs a connection to the server.
When not connecting the cleint to a server the client runs
in local mode. When running in local mode all resources
are located on th client machine.

When being connected to a server you can access
ressources located on the server or on the local machine
by setting the "local_resources"-parameter when con-
structing dictionary or database handles.

When connecting several times for closing the connec-
tion you must disconnect as often as you have connect-
ed to the server. When the client is connected once it
cannot be connected to another server until the open
connection is closed.

logical ODABAClient :: Connect (char *server_name, uint32

host_port)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

server_name Server name

 The server name consists of the port number and the
server identification. Both has been defined when start-
ing up the server (e.g.6123@MetaServer).

If no server string is passed the client expects the server
name in an environment variable ODABA_SERVER or in
an odaba.ini-File on the ODABA installation folder.

host_port Port number

 The port number must be the same the server has been
started with (e.g.6123). If no port number is passed the
client expects the port number being defined in a system
variable ODABA_SERVER_PORT or in a system envi-
ronment INI-file on the ODABA installation folder.

Disconnect - Disconnect from server

 Please make shure that all resources are closed before
disconnecting the client. Disconnecting the client before
closing all opened handles may cause problems and not
all changes are stored.

void ODABAClient :: Disconnect ()Exist - Check whether a da-
tabase exists

 - 237 -

 The function returns YES when a database with the giv-
en path exists and has been initialized as ODABA data-
base. The database path may refer to a database or dic-
tionary. When the referenced file does not exist or does
not refer to an ODABA database the function returns
NO.

Da die Datenbank zum Prüfen eröffnet wird, kann es im
Fehlerfall geschehen, daß eine ungültige Datei angelegt
wird.

logical ODABAClient :: Exist (char *cpath)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

GetDBError - Get last database error

 The function returns the last database error including
error number and description. For more details see Error
class definition.

Error *ODABAClient :: GetDBError ()

Return value

GetDataSource - Get data source name

 The function returns the data source name on position
indx0. The function returns a value, only, if the applica-
tion is working with a data catalogue, i.e. the ini-file must
contain a valid DATA-CATALOGUE section.

char *ODABAClient :: GetDataSource (int32 indx0)

Return value The data source name is passed as 0-terminated string
with a maximum length of 40 characters.

indx0 Position in collection

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

- 238 -

GetServerVariable - Get system variable from server

 The function returns the value for a system variable set
on the server side.

char *ODABAClient :: GetServerVariable (char *var_name)

Return value The value for a system variable must not exceed 255
characters and is provided as 0-terminated string.

var_name System variable name

 Name of the system variable on the server or client side.
System variable names must not exceed 40 characters
and are provided as 0-terminated strings.

IsConnected - Is client connected

 The function checks whether the client is connected or
not. When being connected the function returns YES,
NO otherwise.

logical ODABAClient :: IsConnected ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

KillClient - Kill client on the server

 The function allows killing one or all clients on the serv-
er. When killing all clients the client sending the com-
mand is not killed.

Befor killing the client(s) the system is waiting wait_sec
seconds.

logical ODABAClient :: KillClient (int32 client_id, int32

wait_sec, logical send_message)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

client_id Client the message is send to

 The client number (client_id) is a number the server has
assigned to the client. You can retrieve client numbers
by using the GetClientHandle() function which returns
client information for all active clients.

wait_sec Number of seconds to wait

 - 239 -

 The system waits the given number of seconds befor
executing the request. Default is 300 seconds (5
minutes).

ODABAClient - Konstructor

 To run an application in client/server mode at least one
client must be constructed for an application. The first
client created is the main client that should be created at
the very beginning of the application and that should be
closed at the very end of the application.

In addition a number of other clients can be created to
connect to different servers in one application. When
creating a main client an ini file can be provided to the
constructor. This ini file defines the application section.

System and catalogue sections are read from the ODA-
BA2.INI file that is stored in the ODABA2 installation
path. It is, however, possible to provide separate system
and catalogue definitions for the client with the passed
INI-file. In this case the passed INI-file must contain ei-
ther the system and catalogue sections or it must refer to
an INI-file that contains these sections by defining the
path for the system INI-file in the variable SYS-
TEM_ENVIRONMENT.

The INI-file passed to the client must contain a section
with the name of the application or (when no application
name has been passed) a section with the name "AP-
PLICATION_DATA".

i00

 ODABAClient :: ODABAClient (char

*inipath, char *application_name, char

*progpath, ApplicationTypes application_type)

inipath

application_name Allication name

 The name of the application is usually also the section
name for the application variables in the ini file.

progpath Programme path

- 240 -

 This is the path that is usually passed as first argument
to the application.

Default: NULL

application_type Run as console application

 This option indicates that the application will run as con-
sole application. In this case errors are sent to the con-
sole (default: YES). If this option is set to NO message
boxes are created instead (for Windows, only).

i01

 ODABAClient :: ODABAClient ()i02

 ODABAClient :: ODABAClient (const ODA-

BAClient &client_refc)

client_ref

i03

 ODABAClient :: ODABAClient (CClient

*cclient_ptr)

cclient_ptr

PackDatabase - Pack database

 The function packs a database. The function packs the
database by copying it to a new file. If there is not
enough space on the disk a path refering to temporary
directory must be passed to the packing function. Oth-
erwise the database is packed in the same folder.

When the database consists of several main or sub-
bases each one is copied in its own location or to the
temporary folder.

logical ODABAClient :: PackDatabase (char *cpath, char

*temp_path)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

cpath Complete path

 - 241 -

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

temp_path Temporary path

 The temporary path refers to a folder location for storing
temporary files. It is passed as 0-terminated string.

SendClientMessage - Send message to one or all clients

 The function sends a message to one or all clients. De-
pending on the client type the message is displayed on
the console (console applications) or as message box.

The message is sent to the client adressed via the cli-
ent_id. If no client_id is passed (UNDEF) the message is
send to all clients except the sending one.

logical ODABAClient :: SendClientMessage (int32 client_id, char

*mtext, char *mtitle, char mtype)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

client_id Client the message is send to

 The client number (client_id) is a number the server has
assigned to the client. You can retrieve client numbers
by using the GetClientHandle() function which returns
client information for all active clients.

mtext Message text

 The message text may contain up to 500 characters and
must be 0-terminated.

mtitle Message title

 When displaying the message in a dialogue box the
message title will be displayed in the title bar. The mes-
sage title should refer in some way to the application the
message applys on.

mtype Message Type

- 242 -

 One character indicating the message type can be
passed:

I - information

W - Warning

E - Error

All other message types are considered as errors.

SetServerVariable - Set system variable on server side

 Systemvariables can be set for the server. This is nec-
essary for controlling functions running on the server
side.

Server variables are valid on the server only for the con-
nected client.

logical ODABAClient :: SetServerVariable (char *var_name, char

*var_string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

var_name System variable name

 Name of the system variable on the server or client side.
System variable names must not exceed 40 characters
and are provided as 0-terminated strings.

var_string Value for the system variable

 The value for a system variable must not exceed 255
characters and is provided as 0-terminated string.

 - 243 -

ShutDown - Shut down client

 Usually the last ODABAClient handle referring to the
client will shut down the client when being destructed. In
some cases, e.g. when creating a client with an ini-file
and using system services as data catalogue or error
logs, some system references are still active and refer-
ring to the main client. To be sure that the main client is
closed properly you should use the ShutDown() function
before destructing the client. Make sure that there are no
other references to the client in your application any-
more.

The function will delete all resources associated with the
client and close the client. When the client is the default
or main client, which has been created automatically, the
function will close the main client.

logical ODABAClient :: ShutDown ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 244 -

StartPause - Pause Server

 When pausing the server no more transactions can be
committed until pausing the server is stopped (Stop-
Pause()). The server can pause only after finishing all
running transaction commits. If any commit is still run-
ning after five minutes or a given number seconds
(wait_sec) the server will not pause (error 323). When
the server cannot pause the function stops without paus-
ing the server.

The …Pause functions can be used for keeping the da-
tabase in a consistent state while backing up the data-
base without closing the server. Pause commands
should not be used when running long transactions as
large imports or database reorganizations.

Transactions will not be committed anymore after paus-
ing the server. The timeout interval for committing trans-
actions is 10 minutes. When not being able to start
committing the transaction within the timeout interval the
transaction is cancelled.

Any application may access the database in the pause
state as long as not writing to the database, i.e. as long
as not storing transactions to the database.

For allowing storing data to the database again you must
use the StopPause() function.

logical ODABAClient :: StartPause (int32 wait_sec)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

wait_sec Number of seconds to wait

 The system waits the given number of seconds befor
executing the request. Default is 300 seconds (5
minutes).

StatDisplay - Display database statistics

 The function creates a database statistic for the data-
base passed in the dbpath. The database must be avail-
able via a local or a net drive.

logical ODABAClient :: StatDisplay (char *dbpath, char *ppath)

 - 245 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbpath Complete database path

 The complete database path is passed as 0-terminated
string with a maximum length of 255 characters.

ppath Protocol path

 The protocol path is passed as 0-terminated string. It
must point to a valid folder. The file need not exist.

StopPause - Stop pausing server

 This command stops pausing the server and allows
committing further transactions.

void ODABAClient :: StopPause ()SysInfoDisplay - Display sys-
tem information

 The function creates system information for the data-
base passed in dbpath. The database must be available
via a local or a net drive.

logical ODABAClient :: SysInfoDisplay (char *dbpath, char *ppath

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbpath Complete database path

 The complete database path is passed as 0-terminated
string with a maximum length of 255 characters.

ppath Protocol path

 The protocol path is passed as 0-terminated string. It
must point to a valid folder. The file need not exist.

- 246 -

operator bool - Compare clients

 The function compares two ODABA clients and returns
true (YES) when the clients are the same. Clients are
the same when they have been assigned using the
=operator. Clients are not the seme when the are
opened separately.

NOTYPE ODABAClient :: operator bool ()

Return value

operator= - Assign ODABA client handle

 The function assigns the odaba client to another client
handle. When a client has been created for the source
the client is referenced in the target handle as well.
Whne no client is opened for the source handle the tar-
get client gandle will be empty as well.

ODABAClient &ODABAClient :: operator= (ODABAClient &client_ref)

Return value

client_ref

~ODABAClient - Destructor

 When destructing the client the client disconnects from
the server. When disconnecting the main client (the first
client that has been opened in the application) ´services
as error messages and data catalogue are disabled (un-
til another client is constructed, which becomes the main
client again).

 ODABAClient :: ~ODABAClient ()

 - 247 -

ODABAServer - ODABA Server

 A ODABA server will manage any number of databases.
After creating an ODABA server it can be started and
halted using the functions Start() and Stop(). There is no
login required for connecting to the server, however, for
accessing a database you may have to pass login infor-
mation to the server. Login-Information must be passed
to the CreateClient function. You can overload this func-
tion in your application procedure to provide specific log-
in checkings and other services for an application ODA-
BA2 server.

The ODABA-server maintains a list (catalogue) for data-
base files. This catalogue must be stored under serv-
er.ini in the ODABA2 installation path. The catalogue
section starts with [ODABA-CATALOGUE].

GetCatlgName - Get database name from catalogue

 The function returns the database path for a symbolic
name in the catalogue (server.ini). If no catalogue entry
with the given name is found the function returns the
original name.

char *ODABAServer :: GetCatlgName (char *sym_nams, char *cpath,

int32 maxlen)

Return value

sym_nams

cpath Complete path

 The complete path is passed as 0-terminated string with
a maximum length of 255 characters.

maxlen Size of output buffer

 Specifies the length of the buffer, the information should
be stored into. The information is truncated if it is longer
than the buffer.

- 248 -

ODABAServer - Constructor

 The function creates an ODABA server. The INI-file
passed to the server contains information about the sys-
tem databases and the data catalogue. The programme
path is used for searching actions and should be provid-
ed when other iINI-files or DLLs are to be loaded from
this path.

 ODABAServer :: ODABAServer (char

*inipath, char *prog_path)

inipath

prog_path Programme path

 This is the path that is usually passed as first argument
to the application.

Start - Start server

logical ODABAServer :: Start (int16 wPort)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Stop - Stop server

 When stopping the server all client connections are
closed. You should ensure that no client is active any-
more.

void ODABAServer :: Stop ()~ODABAServer - Destructor

 When destructing the server it is stopped if not done so
far. You should ensure that no client is active anymore.

 ODABAServer :: ~ODABAServer ()

 - 249 -

OperationHandle - Opreartion Handle

 Operation handles can be used for executing operations
as expressions or function calls. Usually, an operation is
associated with a property handle defining the instance
that is passed to the operation as calling object.

CheckExpression - Check validity of an expression

 The function checks whether the expression passed to
the function is syntactically correct (NO) or not (YES,
error).

i0

logical OperationHandle :: CheckExpression (Dictionary *dictptr,

ACObject *obhandle, char *clsnames, char

*exprnames, char *impnames)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dictptr Dictionary handle

 An opened dictionary handle is passed.

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

clsnames

exprnames

impnames

i01

logical OperationHandle :: CheckExpression (Dictionary *dictptr,

char *expression, ACObject *obhandle, char

*clsnames)

- 250 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dictptr Dictionary handle

 An opened dictionary handle is passed.

expression OQL expression

 An OQL expression defines a condition according to the
OQL syntax. OQL expressions must always terminate
with ';'. The OQL-Expression is passed as 0-terminated
string.

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

clsnames

Execute - Execute operation

 The function executes a predefined opoeration. The re-
sult is returned as property handle.

It is possible to pass a property handle as calling object.
If no property handle is passed the one that was used for
creating the operation is used as calling object. When
using amother property handle than the originating one
the type of the properties must be identical.

The result of the operation can be provided with the
GetResult() function.

ci - Calling expression with fixed property handle

 This implementation calls the expression with the prop-
erty handle passed when the operation has been creat-
ed. The selection in the property handle may change but
not the property handle.

logical OperationHandle :: Execute (ParmList *parameters)

 - 251 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

parameters

i01 - Calling operation with variable property handle

 This implementation allows changing the property han-
dle from call to call. After each call the original property
handle for the operation will be put into place again, i.e.
tha calling object passed is being used only as long as
the Execute function runs. Use this implementation with
care, since the property handle passed to the function
should be of the same type as the one used for creating
the operation.

logical OperationHandle :: Execute (PropertyHandle &call_object,

ParmList *parameters)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

parameters

GetDimension - Get dimension of returned value

 The function returns the dimension for the instance cre-
ated by the function. If the result dimension can not be
determined the function returns -1 (AUTO).

In some cases the dimension for the result can be pro-
vided ater executing the expression. In this cate the
function also returns -1 (AUTO).

int32 OperationHandle :: GetDimension ()

Return value The dimension describes the property dimension. this is
the maximum number of instances that can be stored for
the property. The function returns 0 (UNDEF) if there is
no limit (collection) or the dimension (cardinality) defined
for the property.

- 252 -

GetResult - Get result from the operation

 The function returns a property handle that contains the
result of the last execution of the expression.

PropertyHandle &OperationHandle :: GetResult ()

Return value

GetSize - Get size of returned value

 The function returns the area size for the instance creat-
ed by the function. If the result size can not be deter-
mined the function returns -1 (AUTO).

int32 OperationHandle :: GetSize ()

Return value Size of the instance or property area.

Open - Open operation handle

 To execute operations the opration handle must be
opened. After opening the operation handle an expres-
sion or a function can be associated with the operation
handle for being executed.

logical OperationHandle :: Open (PropertyHandle &prophdl_ref)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

OperationHandle - Constructor

 The constructor creates an operation handle with the
passed property handle as calling object.

i00

 OperationHandle :: OperationHandle

(PropertyHandle &prophdl_ref)

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

 - 253 -

i01

 OperationHandle :: OperationHandle (

)ProvideExpression - Create expression
definition

 The function checks the expression and creates an in-
ternal epression presentation.

ci

logical OperationHandle :: ProvideExpression (char *expression,

ParmList *parameters)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

expression OQL expression

 An OQL expression defines a condition according to the
OQL syntax. OQL expressions must always terminate
with ';'. The OQL-Expression is passed as 0-terminated
string.

parameters

i01

logical OperationHandle :: ProvideExpression (DictionaryHandle

&dictionary, ACObject *obhandle, char

*class_names, char *expr_names, PropertyHandle

**parmlist)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dictionary

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

class_names

- 254 -

expr_names

parmlist

 - 255 -

PIREPL - Replace options

 This option is used to control copy or duplicate opera-
tions for instances. The replace option is based on the
existence of in instance in a collection, i.e. whether an
instance with the selected sort key of the target collec-
tion does already exist in the target collection (local ex-
istence) or in one of the base collections of the target
collection (global existence).

Usually, when copying referenced instances the replace
option is passed to the subsequent copy operations.

REPL_relationships - Copy relationships

 The function copies primary relationship collections (not
having been mared as secondary). Together with 'in-
stance' it has the same effect as 'all'.

REPL_instance - Copying parts owned by the instance

 This option is used to copy attributes and all linked in-
stances that are owned by the instance. Relationships
are not copied.

- 256 -

PIStack - Property handle stack

 A property handle stack allows defining a series of relat-
ed property handles. A Property handle stack can be
defined for a property handle and allows activating a
new and saving the current handle using the Push()
function and re-activating the previous handle using the
Pop() function. Thus, it becomes possible, e.g. defining a
sequence of subsequent selections with the possibility of
going back to the prevoius level.

 - 257 -

PropertyHandle - Property Handle

- 258 -

 Property handle are used to handle persistent or transi-
ent data source. A data source is a collection, object
instance or an elementary database field. A data source
contains the data for a property of a specific object.

A property handle usually handles a collection of subse-
quent object instance. In special cases the collection is
singular (e.g. the 'direction' for a persion is exactly one
'Adress' object instance). In other cases the instance is
elementary (as eg the given names of a person).

A property handle has a cursor function that allows to
select one of the instances in the collection as the "cur-
rent" instance. Only from the selected instance you can
retrieve data by means of subsequent property handles
or Get-functions (GetString(), GetTime(), ...) for elemen-
tary datasources.

Generic Property handles

You can define generic property handles using the ge-
neric property handle contructor (PH(type)()). This re-
quires that you have created a C++ header file for the
referenced type. In this case you can access elementary
data field in the instance directly referring to the gener-
ated class members. For references the instance con-
tains corresponding generic property handles that you
can reference by class member name as well. In this
case you need not to create the property handle you
want to access. This makes programming simpler but in
this case you must recompile the application when
changing the database structure. This is not necessary
when referring to property handles hierarchies created in
the appplication.

Property handle hierarchies

Property handles form a tree that defines a specific view
in an application. When defining this view once the
property handles cann be used as long as the applica-
tion follows the defined view. When defining a property
handle for "AllPersons", which is an extent in the data-
base, you can define sub-ordinated property handles for
'name', 'children', and 'company', which refer to the per-
sons name, its children and the company the person is
working for. When selecting another person in the
AllPerson property handle the datasources for 'name',
'children' and 'company' will change. This, however, is
maintained automatically by the systen, i.e. when chang-
ing the selection in an upper property handle the data

 - 259 -

Add - Add instance to collection

- 260 -

 You can add instances to any type of collection or refer-
ence. When adding an instance to a collection the cardi-
nality for the collection is checked as well as unique key
reuirements. When adding an instance to an owning col-
lection or reference a new database instance will be cre-
ated. Adding an instanc to a collection or reference is
possible by position, key (when sort orders are defined
for the collection) or with an initialising instance. When
terminating successfully the instance added to the col-
lection is selected in the property handle.

The position passed (set_pos0) when adding an in-
stance to a collection has an effect only, when the col-
lection is unordered. Otherwise the position is deter-
mined by the key value. For ordered instances you must
always pass a sort or ident key value. When passing a
sort key this must correspond to the active order (index)
set for the property handle. When an __AUTOIDENT
key has been defined the next instance number is de-
termined in the collection or in its most top super set
(based collections).

{b Collection based references}

When adding an instance to a collection based reference
or collection (ie a subset of another collection) the func-
tion checks whether an instance with the same key
(ident key of the instance to be added) does already ex-
ist in the base collection (super set). In this case no new
instance is created but the instnce found in the base col-
lection is added to the current collection or reference.
The instance values are updated from the values of the
instance found in the base collection. When no instance
has been found the new instance (key) is added to the
base collection and than to the current collection. In any
case the instance is shared between the base and the
current collection, i.e. both refer to the same instance.

For base collections you must always provide an ident
key. The function will store the passed keys in an initial
instance (which can also be passed by the application).
From this initial instance the function extracts the ident
key for searching the instance in the basic collections,
i.e. the ident key is the minimum information an instance
should have.

{b Using shared base structure instances}

When the collection refers to an instance which has one
or more shared base instances the instance must con-

 - 261 -

i0 - Add instance

 This function is used to insert an instance at a certain
position in an unordered collection. The function inserts
the instance passed at the passed position (set_pos_w).
When no position or AUTO is passed as position the
instance is inserted infront of the selected instance.
When no instance is selected the new instance is ap-
pended to the end of the collection.

When the collection is ordered the position passed will
be ignored and the instance will be inserted in the collec-
tion according to the key passed within the instance.

Instance PropertyHandle :: Add (Instance newinst, int32

set_pos0_w)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

newinst New instance

 The new instance refers to the data area of the instance
to be added to a collection. The instance contains a ref-
erence to a propertly structured area.

You can pass the instance as (void *) which will be au-
tomatically converted into an instance handle. Only at-
tributes of the new instance are added to the database.
References or relationships in the new instance will be
ignored (if there are any).

set_pos0_w Position in collection

- 262 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

i04 - Add instance by property value

 The function checks whether the property handle passes
a numerical value or not. When passing a numerical val-
ue the function creates an instance at the position ac-
cording to the number passed in the property handle (->
"Create instance at position"). Otherwise the value in the
property handle is interpreted as string key, which will be
converted into key and adds an instance by key value to
the collection (-> "Add instance by key value")..

Instance PropertyHandle :: Add (PropertyHandle &prop_hdl)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

 - 263 -

i1 - Create instance at position

 This function is used to create an instance at a certain
position in an unordered collection. The function creates
the instance at the passed position (set_pos_w). When
AUTO is passed the instance is created infront of the
selected instance. When no instance is selected the new
instance is appended to the end of the collection. The
instance in the property handle can be initialized before
calling the Add function calling GetInitInstance() and set-
ting initial property values. In this case the init_inst op-
tion must be set to YES when calling the function (oth-
erwuise the initialized instance will be ignored) and the
function operates similar to the "Add instance at posi-
tion" function. The instance can be also initialized before
adding to the collection using the DBInitialized event in
the structure context.

When the collection is ordered the position passed will
be ignored and the instance will be inserted in the collec-
tion according to the key passed within the initialized
instance. When the instance is not initialized, the in-
stance is created with the default values defined in the
data model (structure definition).

Instance PropertyHandle :: Add (int32 set_pos0_w, logical in-

it_inst)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

set_pos0_w Position in collection

- 264 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

init_inst Add initialized instance

 The option forces the function to use the internal in-
stance area for creating a new instance in the collection.
This instance has been provided using the GetInitIn-
stance() function and has to be filled by the application
befor calling the Add() function.

Default:YES

 - 265 -

i2 - Add instance by key

 The function adds an instance by key (sortkey). When
the collection is unordered the sort key will be interpret-
ed as ident key (when no extra ident key is passed).
When a sort order has been selected for the collection
that is not the ident key and that does not contain the
ident key, both, sortkey and identkey must be passed to
the function.

Instead of the key you may pass an instance that con-
tains the values for the keys. This can solve problems
when having several unique key indexes for a collection.
You can also use the GetInitInstance() function to set the
initial values in the instance area of the property handle.
In this case init_inst must be set to YES.

Instance PropertyHandle :: Add (Key sortkey, Key identkey_w, In-

stance newinst_w, logical init_inst)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

sortkey Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StrinToKey}())
function. Regardles on the type key values are passed
as (char *) areas.

identkey_w Ident key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StringToKey}())
function. Regardles on the type key values are passed
as (char *) areas. NULL indicates that no key value has
passed.

newinst_w New instance

- 266 -

 The new instance refers to the data area of the instance
to be added to a collection. The instance contains a ref-
erence to a propertly structured area.

You can pass the instance as (void *) which will be au-
tomatically converted into an instance handle. Only at-
tributes of the new instance are added to the database.
References or relationships in the new instance will be
ignored (if there are any).

Default: Instance() (empty instance)

init_inst Add initialized instance

 The option forces the function to use the internal in-
stance area for creating a new instance in the collection.
This instance has been provided using the GetInitIn-
stance() function and has to be filled by the application
befor calling the Add() function.

Default:YES

i3 - Add instance by index and key

 This function can be used to add an instance to different
collections. The collection referenced in the property
handle might be unordered, which requires adding an
instance by pposition. A base collection defined for the
collection, however, requires a key for adding an in-
stance. In this case, the position, a sortkey and an
identkey might be necessary. Instead of the key values
an instance (newinst_w) can be passed or the velues
can be set in the instance area of the property handle
(GetInitInstance()). You may also use the DBInitialized
event handler for settinig initial values for the instance to
be created.

Instance PropertyHandle :: Add (int32 set_pos0, Key sortkey, Key

identkey_w, Instance newinst_w, logical in-

it_inst)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

set_pos0 Position in collection

 - 267 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSATNCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSATNCE (0) refers to the last instance in a
collection according to the selected index (sort order).

sortkey Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StrinToKey}())
function. Regardles on the type key values are passed
as (char *) areas.

identkey_w Ident key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StringToKey}())
function. Regardles on the type key values are passed
as (char *) areas. NULL indicates that no key value has
passed.

newinst_w New instance

- 268 -

 The new instance refers to the data area of the instance
to be added to a collection. The instance contains a ref-
erence to a propertly structured area.

You can pass the instance as (void *) which will be au-
tomatically converted into an instance handle. Only at-
tributes of the new instance are added to the database.
References or relationships in the new instance will be
ignored (if there are any).

Default: Instance() (empty instance)

init_inst Add initialized instance

 The option forces the function to use the internal in-
stance area for creating a new instance in the collection.
This instance has been provided using the GetInitIn-
stance() function and has to be filled by the application
befor calling the Add() function.

Default:YES

 - 269 -

AddReference - Add persistent instance

 The function adds an instance selected in another prop-
erty handle to the collection/reference of the current
property handle. Both property handles must have the
same type or the same base type if they are weak typed.
You can use AddReference() only for not owning collec-
tions. Usually the function is used to fill temporary ex-
tents with instances, which have been selected for spe-
cial purposes.

You can only add instances that are defined in the same
database as the instances of the target propüerty han-
dle. It is also not possible to add an instance by refer-
ence from a server database to a local database or vize
versa.

After addin the instance to the property handle the add-
ed instance is the currently selected one.

Events

When adding an instance to a collection the function
fires an i Insert-event. You can use the insert event for
checking the operation and deny it. After the instance
has been added an i Inserted-Event is generated.

When the post event handler has been modifying the
instance an additional i Stored-event might be created.
When selecting the instance in the property handle a
final i Read-event is generated..

logical PropertyHandle :: AddReference (PropertyHandle

&source_handle, int32 set_pos0_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

source_handle Source property handle

- 270 -

 The source property handle must be opened and an in-
stance must be selected in the handle.

set_pos0_w Position in collection

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

AllocDescription - Allocate property description

 The function creates an empty description for the proper-
ty handle. When the property handle is already associat-
ed with a description this will be removed from the prop-
erty handle.

i0

logical PropertyHandle :: AllocDescription ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 271 -

i1

logical PropertyHandle :: AllocDescription (DBHandle *dbhandle,

char *fldnames, char *fldtypes, SDB_RLEV

ref_level, uint16 size, uint16 precision,

uint16 dimension)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbhandle Pointer to database handle

 This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

fldnames

fldtypes

ref_level Reference level

 The reference level describes the way and the level of
instance references.

size Size

 Size of the instance or property area.

precision Precision

 The precision defines the number of decimal positions
behind the decimal point for numerical valued. For date
and time values it defines the way of presenting the val-
ues in charachter presentations.

dimension Dimension

 The dimension describes the property dimension. this is
the maximum number of instances that can be stored for
the property. The function returns 0 (UNDEF) if there is
no limit (collection) or the dimension (cardinality) defined
for the property.

- 272 -

AllocateArea - Allocate instance area

 The function allocates a data area for a property handle
if this has not yet been done. If the property handle is
linked to the data area of another property handle this
link is deleted an a private data area is allocated.

You can use this function when you create dummy prop-
erty handles which are controlled by the application.

logical PropertyHandle :: AllocateArea ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Cancel - Cancel selection

 The function resets modifications made on the internal
instance and cancels the selection. After cancelling an
instance the property handle has no current selection. All
subordinated property handles are cancelled as well.

logical PropertyHandle :: Cancel ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CancelBuffer - Cancel all buffered instances

 The function will release all instances in a buffer. The
next Get() access will fill the buffer again.

logical PropertyHandle :: CancelBuffer ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 273 -

ChangeBuffer - Change collection buffer count

 Instances for a PropertyHandle can be read in block
mode. The function allocates a buffer size to the proper-
ty handle, i.e. the number of instances that will be read
at once. When a buffer has already been allocated you
can use the function to change the buffer size. Passing 0
or 1 will change from buffered read to unbuffered access
(same as ReleaseBuffer()).

Buffered access can be used for reading collections with
fixed type, only. Trying to enable buffered access for
untyped or weak typed collections will fail without writing
an error to the error log file.

When passing AUTO as buffer size the number of in-
stances stored in the collection is reserved. Thus, you
will read the complete collection into the buffer.

When a filter has been defined for the property handle
only instances are read into the buffer that fulfill the filter
condition.

Usually the buffer is filled automatically when reading an
instance that is not contained in the buffer. The system
tries to read as many instances as defined in buffer size
from the current position. Subsequent Get() request will
read from the buffer as long as possible. Cancel() will
cansel the current selection but not the instances in the
buffer.

To position the buffer on a certain instance you can use
the ReadBuffer() function. For resetting the buffer you
can use the CancelBuffer() function.

You cannot use blockmode for views containing refer-
ences. In this case the function will ignore the request
and buffer size remains 1. There are also problems in
client/server mode when referring to sub-property han-
dles for references in instances that heve been reading
in blockmode. Moreover, blockmode cannot be used for
updating instances.

int16 PropertyHandle :: ChangeBuffer (int16 buffnum)

Return value This is the number of instance buffers allocated to the
collection handle.

buffnum Number of instance buffers

- 274 -

 This is the number of instance buffers allocated to the
collection handle.

ChangeMode - Change access mode

 The function allows changing the access mode for a
PropertyHandle. This requires that the batabase object
access mode is higher or equal to the mode that is going
to be activated.

You can always change from higher modes (PI_Write,
PI_Update) to lower modes (PI_Read). Changing from
read to update or write mode has, however, some limita-
tions. You may change the mode in any directions for
extent property handles and for property handles refer-
ring to updateable relationships. Changing the mode for
non updateable relationschips or references, however, is
possible only to PI_Read or PI_Write. Changing to
PI_Write is possible only, when the parent PropertyHan-
dle is opened with or set to PI_Write.

Changing the access mode will cancel all subsequent
PropertyHandles and change the mode to the mode re-
quested for teh current PropertyHandle.

Property handle running in block mode can be accessed
in read mode, only. Change mode will fail when at-
temtimg to change the mode to update or write in this
case.

PIACC PropertyHandle :: ChangeMode (PIACC newmode)

Return value Access mode that was valid for the property handle.

newmode New access mode

 Access mode to be set for the property handle.

Check - Check property handle

 The function checks whether a property handle is valid
and opened.

Usually property handles are opened on demand, i.e.
when access to any database source is required. After
opening a property handle a structure definition is avail-
able and access is possible in principle.

If the property handle is invalid or not opened the func-
tion returns YES, otherwise NO.

 - 275 -

logical PropertyHandle :: Check (logical ini_opt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ini_opt Initialize option

 The option forces the function to initialize the property
handle if not yet done. Usually property handles are ini-
tialized automatically on demand, i.e. when being used
the first time.

Default: NO

CheckWProtect - Is current instance permanent write protect-
ed?

 Instances can be marked as persistent write protected
(SetWProtect()). Such instances cannot be updated by
any user. The function returns the persistent write pro-
tection state.

Persistent write protection can be reset with ResetWPro-
tect().

logical PropertyHandle :: CheckWProtect ()

Return value Instances can be write protected because they are used
by anoter application (pessimistic locking) or because
they are persistent wirite protected.

0 - instance is not write protected

1 - instance is temporarily write protected

2 - instance is persistent write protected

- 276 -

Close - Close Property Handle

 The function will close the property handle without de-
stroying it. The handle can be re-opend later again.

When closing or destroying the property handle unsaved
modifications will be saved atomatically. This might
cause a number of activities including event handlers.

Since the close fonction or the destructor are called im-
plicitely in many cases, the function will push the error
and restore it, when no error has detected while closing
the property handle. When terminating normally, the er-
ror set is the same as before calling the close function.
Otherwise the error returned in SDBError or CTXError is
the error from the close function.

logical PropertyHandle :: Close ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Compare - Compare the values for two property handles

 The function compares the values of the two property
handles. The function cannot compare collections.

The function retuns -1 when the the value for the proper-
ty handle is lower than the value for the passed property
handle. The function retuns 1 when the the value for the
property handle is higher than the value for the passed
property handle. The function returns 0 if the values are
equal.

The function returns ERIC (-99) if the values are not
compareble, i.e. no instance selected for the property or
invalid property handle.

i00 - Compare with other property handle

 This implementation compares the value in the property
handle with the value in the passed property handle.
Data conversion is performed when required.

int16 PropertyHandle :: Compare (const PropertyHandle &cprop_hdl

)

 - 277 -

Return value The result of a comarision is an integer value with the
following meaning:

 0 - both operands have the same value

 1 - the calling operand is greater than the passed oper-
and

-1 - the calling operand is smaller than the passed oper-
and

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01 - Compare with string value

 This implementation compares the value in the property
handle with the value in the passed string. Data conver-
sion is performed for the string when required.

int16 PropertyHandle :: Compare (char *string)

Return value The result of a comarision is an integer value with the
following meaning:

 0 - both operands have the same value

 1 - the calling operand is greater than the passed oper-
and

-1 - the calling operand is smaller than the passed oper-
and

string String area

 Pointer to the 0-terminated string area.

i02 - Compare with 32-bit integer value

 This implementation compares the value in the property
handle with the passed integer value. Data conversion is
performed for the passed value when required.

int16 PropertyHandle :: Compare (int32 long_val)

- 278 -

Return value The result of a comarision is an integer value with the
following meaning:

 0 - both operands have the same value

 1 - the calling operand is greater than the passed oper-
and

-1 - the calling operand is smaller than the passed oper-
and

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

i03 - Compare with double value

 This implementation compares the value in the property
handle with the passed double float value. Data conver-
sion is performed for the passed value when required.

int16 PropertyHandle :: Compare (double double_val)

Return value The result of a comarision is an integer value with the
following meaning:

 0 - both operands have the same value

 1 - the calling operand is greater than the passed oper-
and

-1 - the calling operand is smaller than the passed oper-
and

double_val

i04 - Compare with date value

 This implementation compares the value in the property
handle with the passed date value. Data conversion is
performed for the passed value when required. Convert-
ing date values to string values may result in different
string values for the same date value depending on the
national setting. Hence, string values should not be
compared with date values. In this case it is more ap-
propriate to compare the date values directly (
ph.GetDate() == date_val).

int16 PropertyHandle :: Compare (dbdt date_val)

 - 279 -

Return value The result of a comarision is an integer value with the
following meaning:

 0 - both operands have the same value

 1 - the calling operand is greater than the passed oper-
and

-1 - the calling operand is smaller than the passed oper-
and

date_val Date value

 The data value is passed in the internal data format.

i05 - Compare with time value

 This implementation compares the value in the property
handle with the passed time value. Data conversion is
performed for the passed value when required. Convert-
ing time values to string values may result in different
string values for the same time value depending on the
national setting. Hence, string values should not be
compared with time values. In this case it is more appro-
priate to compare the time values directly (ph.GetTime()
== time_val).

int16 PropertyHandle :: Compare (dbtm time_val)

Return value The result of a comarision is an integer value with the
following meaning:

 0 - both operands have the same value

 1 - the calling operand is greater than the passed oper-
and

-1 - the calling operand is smaller than the passed oper-
and

time_val Time value

 The time value is passed in the internal data format.

- 280 -

CompareKey - Compare two ident key values

 The function compares two ident key values. The keys
are compared according to the data types of it's compo-
nents.

The function retuns -1 when the the value for the first
key (ident_key1) is lower than the value for the second
key (ident_key2). The function retuns 1 when the the first
value is higher than the second one. The function re-
turns 0 when the keys are are equal.

The function returns ERIC (-99) if the values are not
compareble, i.e. when no ident key has been defined or
when the property handle is invalid.

int8 PropertyHandle :: CompareKey (Key ident_key1, Key

ident_key2)

Return value Compare functions return the folowing values:

 0 - Both values are equal

 1 - The second value is larger than the first

 -1 - The second value is smaller than the first

ident_key1 First ident key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.
Regardles on the type key values are passed as Key
handle or (char *) areas.

ident_key2 Second key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.
Regardles on the type key values are passed as Key
handle or (char *) areas.

 - 281 -

CompareSortKey - Compare keys accroding to current sort or-
der

 The function compares two key values for the selected
sort key (SetOrder()). The keys are compared according
to the data types of it's components.

The function retuns -1 when the the value for the first
key (sort_key1) is lower than the value for the second
key (sort_key2). The function retuns 1 when the the first
value is higher than the second one. The function re-
turns 0 when the keys are are equal.

The function returns ERIC (-99) if the values are not
compareble, i.e. when the collection is unordered or
when the property handle is invalid.

int8 PropertyHandle :: CompareSortKey (Key sort_key1, Key

sort_key2)

Return value Compare functions return the folowing values:

 0 - Both values are equal

 1 - The second value is larger than the first

 -1 - The second value is smaller than the first

sort_key1 First sort key

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.
Regardles on the type key values are passed as Key
handle or (char *) areas.

sort_key2 Second key

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.
Regardles on the type key values are passed as Key
handle or (char *) areas.

- 282 -

CompareType - Check properties for comparability

 The function checks the comparability for the data of two
property handles. Usually property handles are consid-
ered as comparable when they have the same type.
When requesting data convertion (passing YES for con-
vert) the function checks, whether the types are compa-
rable after conversion.

logical PropertyHandle :: CompareType (PropertyHandle &prop_hdl,

logical convert)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

convert Conversion option

 To allow data conversion the value must be set to YES.
To supress data conversion NO shold be passed.

Contains - Does property contain text

 The function checks, wether the instance for the select-
ed property handle contains the text passed in
reg_string. The function returns true (YES), when the
text has been found.

This version supports simple string expressions as
'string", '*string', 'string*' and '*string*'. When not begin-
ning or terminting the search string with an '*', the text
must be at the beginning or at the end of a word.
Searching for 'string' will search for whole words, only.

i00 - Search for text in instance

 When the instance is a structures instance, the function
is called for all attributes and MEMO fields in the select-
ed instance. Otherwise the data in the attribute or
MEMO field is checked.

 - 283 -

logical PropertyHandle :: Contains (char *reg_string, logical

case_opt)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

reg_string Regular string expression

 The string contains a regular string expression passed
as 0-terminated string.

case_opt Case sensitive

 The option indicates case sensitive data in text (YES)

i01 - Search for text in property

 The function searches for the text in the property passed
in 'prop_path'. This implementation has been provided
for convinience. It does the same as
prop_path.Contains(reg_string).

logical PropertyHandle :: Contains (char *reg_string, char

*prop_path, logical case_opt)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

reg_string Regular string expression

 The string contains a regular string expression passed
as 0-terminated string.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

case_opt Case sensitive

 The option indicates case sensitive data in text (YES)

ConvertToWinChar - Converts ASCII character into Windows
compatible ANSI character set

 The function converts ASCII character in a text property
handle into Windows compatible ANSI character. The
data is updated in-place and a data modification is sig-
naled.

logical PropertyHandle :: ConvertToWinChar ()

- 284 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 285 -

Copy - Copy instance

- 286 -

 The function allows copying instances from one collec-
tion into another. The function creates a new instance
that is filled with the data from the source instance. The
function allows copying instances between collections in
different databases.

The source handle must point to a selected instance that
is copied into the target handle collection. The target
property handle must be opened for write access.

Source and target property handle may refer to collec-
tions of different types. Properties of the copied instanc-
es are copied by name. Names of property handles in
base structured are considered without prefix. When the
target collection is weak typed the type for the target
instance must be set by the application before copying
the instance (SetType()).

When the instance to be copied does already exist in the
target collection, which is determined according to the
sort order selected for the target collection, different re-
place options ({r. PIREPL}) will control the copy behav-
iour (replopt). Copying an existing instance without re-
questing replacement of existing instances will result in
an error. When no unique sort order has been selected
instances are considered as not existing and are copied
always.

Copying instances includes copying related collections
(references and relationships). Only primary relation-
ships (not defined as secondary) are copied to avoid
unlimited recursions. When copyinf related collection the
replace option is passed to the subsequent copy opera-
tions.

The copy type supports a two phase copy process.
Normally copying an instance owning parts and primary
relationships are copied at once. Sometimes this may
lead to logical problems since it is not always possible to
ensure that base collections are copied before copying
primary relationships based on it. Since this leads to in-
complete copy operations a two phase copy can be used
copying first the owning parts (REPL_instance) and later
with a second call of the copy function the primary rela-
tionships (REPL_relationship).

When Copy terminates succesfully the copied instance
is selected in the target property handle and the instance
is returned. When terminating with errors the function
returns an emty instance.

 - 287 -

i00 - Copy selected instance

 The function copies the selected instance from the
source property handle to the target property handle.

Instance PropertyHandle :: Copy (PropertyHandle &source_handle,

PIREPL replopt, int16 copy_type)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

source_handle Source property handle

 The source property handle must be opened and an in-
stance must be selected in the handle.

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

copy_type Copy type

 The copy type determins the way of copying instances:

REPL_all - copies all instances recursively owned by the
instance and the primary relationships

REPL_Instance - copies all instances recursively owned
by the instance

REPL_relationship - copies the primary relationships

- 288 -

i01 - Copy and rename

 The implementation copies the selected instance to the
target property handle. The sort key of the instance ac-
cording to the settings in the target property handle is
changed to the passed key value. When the new key
value does already exist in the target collection and the
collectin index requires unique keys, no instance will be
copied and the function returns NULL.

Instance PropertyHandle :: Copy (PropertyHandle &source_handle,

Key new_key, PIREPL replopt, int16 copy_type)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

source_handle Source property handle

 The source property handle must be opened and an in-
stance must be selected in the handle.

new_key New key for the instance

 The key passed for renaming the instance must be
structured according to the currently selected sort order.

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

copy_type Copy type

 - 289 -

 The copy type determins the way of copying instances:

REPL_all - copies all instances recursively owned by the
instance and the primary relationships

REPL_Instance - copies all instances recursively owned
by the instance

REPL_relationship - copies the primary relationships

i02 - Copy to position

 This implementation copies the selected instance from
the source instance at the position passed in set_pos_w
in the target collection. When the passed position is
greater that the collection count, the position is changed
to the number of instances in the target collection. When
passinf AUTO the instance is positioned infront of the
selected instance in the target collection (if an instance
is selected) or appended at the end of the list.

When the collection is ordered, the position passed is
ignored and the instance is inserted according to the key
value in the source instance.

Instance PropertyHandle :: Copy (PropertyHandle &source_handle,

int32 set_pos0, PIREPL replopt, int16

copy_type)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

source_handle Source property handle

 The source property handle must be opened and an in-
stance must be selected in the handle.

set_pos0 Position in collection

- 290 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSATNCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSATNCE (0) refers to the last instance in a
collection according to the selected index (sort order).

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

copy_type Copy type

 The copy type determins the way of copying instances:

REPL_all - copies all instances recursively owned by the
instance and the primary relationships

REPL_Instance - copies all instances recursively owned
by the instance

REPL_relationship - copies the primary relationships

 - 291 -

i03

Instance PropertyHandle :: Copy (PropertyHandle &source_handle,

Key new_key, int32 set_pos0, PIREPL replopt,

int16 copy_type)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

source_handle Source property handle

 The source property handle must be opened and an in-
stance must be selected in the handle.

new_key New key for the instance

 The key passed for renaming the instance must be
structured according to the currently selected sort order.

set_pos0 Position in collection

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSATNCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSATNCE (0) refers to the last instance in a
collection according to the selected index (sort order).

replopt Replace option

- 292 -

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

copy_type Copy type

 The copy type determins the way of copying instances:

REPL_all - copies all instances recursively owned by the
instance and the primary relationships

REPL_Instance - copies all instances recursively owned
by the instance

REPL_relationship - copies the primary relationships

CopyData - Copy data from an instance area

 The function copies the data from the instance area
passed into the selected instance of the property handle.
The structure of the instance area must correspond to
the structure of the property handle.

Passing 'saveopt' YES will store the instance immediate-
ly.

logical PropertyHandle :: CopyData (char *instance, logical

switchopt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

instance Instance area

 - 293 -

 Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

switchopt Unselct option

 The option forces the function to unselect the selected
instance in the property handle after terminating the
function.

CopyDescription - Create a copy for the property description

 The function creates a copy for the property definition
that can be modified in the application. Do never modify
the description profided by the system.

logical PropertyHandle :: CopyDescription (DBFieldDef *prop_def

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_def Property definition

 The property defintion contains the metadata for the ref-
erenced property instance.

CopyHandle - Create a copy of the property handle

 The function creates a copy of the property handle when
being called with a property handle reference. A copy of
a property handle has its own cursor but refers to the
same data source (collection, instance, value).

When passing a property handle pointer the function
creates another property handle that shares the data
source and the cursor with its origin. In this case chang-
ing the selection in the origin or the copy will always af-
fect the other handle as well.

i0

logical PropertyHandle :: CopyHandle (PropertyHandle &prop_hdl)

- 294 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01

logical PropertyHandle :: CopyHandle (PropertyHandle

*property_handle)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

property_handle Pointer to a property handle

 Is a pointer to an (usually) opened property handle.

CopyInst - Copy transient instance

 The function allows copying a transient instance into the
the collection referenced by the property handle. Source
and target may have different structure definitions. Prop-
erties are copied by property names. Type conversion is
performed when necessary. After copying the attributes
the function tries to locate the instance according to the
sort key or the ident key (if no order is defined). Other-
wise the function tries to locate the instance in the base
collection (if there is any). When the instance does al-
ready exist in the collection it will be overwritten accord-
ing to the replace options. Otherwise the instance is
added to the collection.

Instance PropertyHandle :: CopyInst (char *srceinst, smcb

*srcesmcb, PIREPL replopt, int16 copy_type)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

srceinst Source instance

 - 295 -

 A pointer to an instance of the defined type must be
passed. The instance can be a persistent instance read
from another location or a transient one. The structure of
the instance must confirm to the passed structure defini-
tion (srcesmcb). References or relationships in the new
instance will be ignored (if there are any).

srcesmcb Pointer to general structure definition

 The smcb is a more general way to define structure
(DBStructDef). It contains information for the structure
and its properties. The definition describes the structure
of the instance passed to the function.

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

copy_type Copy type

 The copy type determins the way of copying instances:

REPL_all - copies all instances recursively owned by the
instance and the primary relationships

REPL_Instance - copies all instances recursively owned
by the instance

REPL_relationship - copies the primary relationships

- 296 -

CopySet - Copy collection

 The function copies all instances of the source collection
to the target collection. The function works well for multi-
ple references as well as for single references. The func-
tion cannot be used for MEMO fields.

The target Property Handle must be opened in unpdate
mode (PI_Write).

Source and target need not to refer to the same object
type. Attributes and references are copied by property
name, i.e. they are assigned by looking for the same
property name in the target instance. Data conversin is
performed automatically if possible. This includes also
convertind imbedded instances into references and re-
verse.

The target collection is not emptied automatically. Exist-
ing instances in the target are replaced according to the
replace option passed to the function.

When successfull the function returns the number of in-
stances copied to the target collection (including 0 when
the source was empty). When the function has terminat-
ed because of an error it returns AUTO (-1). Source and
target handle are not positioned after terminating the
function.

int16 PropertyHandle :: CopySet (const PropertyHandle

&csource_handle, PIREPL replopt, int16

copy_type)

Return value

csource_handle Source property handle

 The source property handle must be opened and an in-
stance must be selected in the handle.

replopt Replace option

 - 297 -

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

copy_type Copy type

 The copy type determins the way of copying instances:

REPL_all - copies all instances recursively owned by the
instance and the primary relationships

REPL_Instance - copies all instances recursively owned
by the instance

REPL_relationship - copies the primary relationships

CreateTempExtent - Creates a temporary extent

 This function can be used to open a property handle for
a transient collection property (transient reference). The
property must have a definition that has been provided
by the constructor or an appropriate open function.

The function creates a temporary collection with the
structure of the transient reference property. The prop-
erty handle is opened in write mode, always. If the col-
lection is already opened the function returns without
error. You can reset the transient reference using the
ResetTransientProperty() function.

The function returns an error (YES) if the property han-
dle does not define a transient reference.

i0

logical PropertyHandle :: CreateTempExtent (ACObject *obhandle)

- 298 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

i01

logical PropertyHandle :: CreateTempExtent (PropertyHandle

&prophdl_ref, char *extnames_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

extnames_w Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

 - 299 -

Delete - Delete/remove instance from collection

 The function removes the selected instance from the
collection. Whe passing a key or a position the function
selects the instance with the passed key or the given
position before removing it from the collection. Deleting
by key is possible only when a sort order with a unique
key has been selected. For removing an instance from a
collection the property handle must be opened in write
mode. For deleting the instance the selected instance
must be available in write mode as well.

Removing an instance from a collection will delete the
instance as well, when the collection is owning the in-
stance or when the instances in the collection do depend
on the collection. You may also request deleting the in-
stance by passing YES for the del_dep parameter.

Removing an instance from a collection it will maintain
automatically inverse references. Moreover, the instance
is removed from all derived collections (subsets). This
means the instances might be deleted also, when being
dependent on one of the derived collections.

When deleting the instance derived instances are delet-
ed as well. All inverse relationships and subset relation-
ships are maintained.

i01 - Delete instance by key

 The function deletes an instance by key. When no in-
stance with the passed key can be located, the function
terminates with error.

logical PropertyHandle :: Delete (Key sort_key)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

sort_key Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

- 300 -

i02 - Delete instance by position

 The function deletes the instance at the position passed
to the function (set_pos0_w). When AUTO is passed the
current instance is deleted. Dependent instances are
usually deleted as well (del_dep=YES).

When passing NO, depending instances are not deleted,
as long as they are not owned by the current instance.

logical PropertyHandle :: Delete (int32 set_pos0_w, logical

del_dep)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

set_pos0_w Position in collection

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

del_dep Delete dependent instances

 - 301 -

 Usually this option is set to YES, i.e. all dependent in-
stances are deleted when being removed from the col-
lection. Passing NO dependent instances are not delet-
ed but removed from the collection, only.

Instances owned by the collection are, however, always
deleted.

i03

logical PropertyHandle :: Delete (PropertyHandle &prop_hdl)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

DeleteSet - Delete/remove all instance in a collection

 The function removes all instances from the collection.
Instances are removed/deleted as described in the De-
lete() function. When the finction fails the collection re-
mains unchanged.

logical PropertyHandle :: DeleteSet (logical del_dep)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

del_dep Delete dependent instances

 Usually this option is set to YES, i.e. all dependent in-
stances are deleted when being removed from the col-
lection. Passing NO dependent instances are not delet-
ed but removed from the collection, only.

Instances owned by the collection are, however, always
deleted.

- 302 -

Dereference - Dereference collection handle

 The function returns a dereferenced property handle.
The Area is shared with the Area of the original handle
and the instance is associated with the collection of the
original handle.

PropertyHandle *PropertyHandle :: Dereference ()

Return value Is a reference to an (usually) opened property handle.

Duplicate - Duplicate instance

 You can use duplicate to create a new version of the
selected instance in the same collection.

Duplicate should be used only, if the instance to be cop-
ied has no shared base instances or if all shared base
instances are identified by the selected sort key for the
instance. If this is not the case the system trys to create
appropriate base instances with refering to the original
base instance except base instances identified by
__AUTOIDENT or __IDENTITY, i.e. Duplicate() will not
copy automatic keys but creates new base instances
with new keys.

i01

Instance PropertyHandle :: Duplicate (int32 set_pos0, PIREPL

replopt)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

set_pos0 Position in collection

 - 303 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSATNCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSATNCE (0) refers to the last instance in a
collection according to the selected index (sort order).

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

i1

Instance PropertyHandle :: Duplicate (Key ident_key, PIREPL

replopt)

- 304 -

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

ident_key Ident key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

ExecuteInstanceAction - Execute action on instance level

 The function calls an action that is defined in the struc-
ture context of the current instance. The function is exe-
cuted on the server side.

The action may use the SetActionResult() function to
pass the result of the action to the client application. The
result can be retrieved from the client application using
the function GetActionResult().

logical PropertyHandle :: ExecuteInstanceAction (char

*action_name, char *parm_string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

action_name Name of the action to be performed

 - 305 -

 The name of the action is passed as 0-terminated string
with a maximum length of 40 significant characters.

parm_string Parameter string

 The parameter string is passed as 0-terminated string
and contains the parameters according to the conven-
tions of the action called.

ExecutePropertyAction - Execute action on property (collection)
level

 The function calls an action that is defined in theproperty
context of the property handle. The function is executed
on the server side.

The action may use the SetActionResult() function to
pass the result of the action to the client application. The
result can be retrieved from the client application using
the function GetActionResult().

logical PropertyHandle :: ExecutePropertyAction (char

*action_name, char *parm_string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

action_name Name of the action to be performed

 The name of the action is passed as 0-terminated string
with a maximum length of 40 significant characters.

parm_string Parameter string

 The parameter string is passed as 0-terminated string
and contains the parameters according to the conven-
tions of the action called.

Exist - Is instance selected?

 The function checks for references and collections
whether an instance is selected or not. For attributes the
functions checks whether an instance area has been
allocated for the instance or not.

logical PropertyHandle :: Exist () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

- 306 -

ExtractKey - Extract ident key value

 The function extracts the ident key value according to
the structure definition of the property handle.

When no instance has been passed the function extracts
the key from the currently selected instance. If no in-
stance has been selected in the property handle the
function will set the cursor to the first instance (if possi-
ble). When no instance could be selected (empty data-
source) the function returns an empty key.

When a key area has been passed in the key parameter
the function returns the key in the passed key area.
When no key or an empty key has been passed the re-
turned key area refers to an internal area, which should
not be modified by the application. This area is valid until
the next ODABA interface function has been called.

Key PropertyHandle :: ExtractKey (Key ident_key_w, Instance in-

stance_w)

Return value The key is provided in the internal key format. When
necessary the key value can be converted to a string
using the ({.r pib.KeyToString}()) function.

ident_key_w Ident key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.

Default: Key() (empty key)

instance_w Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a refer-
ence to a propertly structured area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

Default: Instance()

 - 307 -

ExtractSortKey - Extract sort key value

 The function extracts the key value according to the
curent sort order (index).

When no instance has been passed the function extracts
the key from the currently selected instance. If no in-
stance has been selected in the property handle the
function will set the cursor to the first instance (if possi-
ble). When no instance could be selected (empty data-
source) the function returns an empty key.

When a key area has been passed in the key parameter
the function returns the key in the passed key area.
When no key or an empty key has been passed the re-
turned key area refers to an internal area, which should
not be modified by the application. This area is valid until
the next ODABA interface function has been called.

Key PropertyHandle :: ExtractSortKey (Key sort_key_w, Instance

instance_w)

Return value The key is provided in the internal key format. When
necessary the key value can be converted to a string
using the ({.r pib.KeyToString}()) function.

sort_key_w Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.

Default: Key() (empty key)

instance_w Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a refer-
ence to a propertly structured area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

Default: Instance()

Fill - Fill instance from external one

 The function copies all fields including references from
the instance passed to the function into the selected in-
stance.

logical PropertyHandle :: Fill (char *instance)

- 308 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

instance Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

FillData - Fill instance from external one

 The function copies all fields without references from the
instance passed to the function into the selected in-
stance.

logical PropertyHandle :: FillData (char *instance)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

instance Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

FirstKey - Locate first key

 The function locates the first sort key in the index. When
the data source is unordered the function locates the first
instance and extracts the ident key.

The returned key area refers to an internal area, which
should not be modified by the application. This area is
valid until the next ODABA interface function has been
called.

Key PropertyHandle :: FirstKey ()

 - 309 -

Return value The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

Get - Get property instance

 The Get() function allows selecting an instance in a
property handle collection by key or position. The func-
tion can also be used to locate an instance in an array
attribute or to get a single attribute instance. Before a
new instance is selected the curent selection in the
property handle is cancelled. in case of instance modifi-
cations on the previously selected instance those are
saved automatically. Selecting an instance will also can-
cel the selection of all subordinated property handles.

The function returns the instance that has been selected
in the property handle when is has been executed suc-
cessfully. Otherwise it returns an empty instance.

- 310 -

i01 - Get Instance by index position

 Reading an instance by position is locating the instance
on the given location in the selected index (sort order).
Thus, the result will change usually when changing the
selected index for the collection. Using index positions
for reading is also a weak point when indexes are up-
dated simultaneously, since the index position might
change when other users insert or remove entries from
the index. To avoid this you may use the LockSet() func-
tion, that locks the complete collection. Access by posi-
tion, however, is a comfortable way browsing through a
collection. Access by position cannot be used for LOID
or GUID property handles. Passing a number to an LOID
handle interpretes the number as local object identity.

For a path property Get() by position automatically
changes the selection for higher properties in the path
when the end of collection is signaled an a level that is
not the top level for the path property.

Passing AUTO as position the function returns the in-
stance currently selected in the property handle. When
no instance is selected the function returns the first in-
stance in the collection. When an instance is selected in
the property handle and the current access mode does
not correspond to the required access mode, the func-
tion will re-read the instance. Thus, the function can be
used to update the access mode when the selected in-
stance was write protected. Selections in subordinated
property handles are canceled when re-reading the in-
stance.

Instance PropertyHandle :: Get (int32 set_pos0_w)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

set_pos0_w Position in collection

 - 311 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

i02 - Get instance by key value

 When reading an instance by key, this is considered as
key in the currently selected index (SetOrder()). When
the key cannor be found in the index the function returns
an empty instance. It is also possible to locate an in-
stance by key in an unordered collection, when it has
been marked as unique (no duplicate instances). In this
case the key must be passed according to the structure
of the ident key. The key must be passed according to
the internal key structure.

The key can also be an LOID or a GUID string when the
property handle has been opened for reading by local
object identities (__LOID) or by global unique identifiers
(__GUID).

When positioning the instance for a path property the
key must consist of all sort keys along the path.

Instance PropertyHandle :: Get (Key sort_key)

- 312 -

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

sort_key Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

i03 - Get instance by value in the property handle

 When passing the value for locating an instance in a
collection via property hanndle, Get() is called as get by
key or index depending on the data type defined in the
property handle.

When the value property handle passes a structured
instance of the same or a specialized type as the in-
stance to be selected, the key value is extracted from
the instance passed in the property handle and get by
key is used.

When passing a text value (STRING, MEMO or CHAR),
the text data is considered as string key where key kom-
ponents are separated by |. You cannot pass a struc-
tured key (Key) my means of property handles.

If not the key or instant version is used the 'get by posi-
tion' version is called. Non-integer numerical values are
rounded to the next lower integer number.

Instance PropertyHandle :: Get (PropertyHandle &prop_hdl)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

 - 313 -

GetActionResult - Get result from last action executed

 The function returns the resultstring from the last action
executed. The result string is available until the next ac-
tion call, only. When the action does not return a result
the function returns NULL.

char *PropertyHandle :: GetActionResult ()

Return value The result string can be a list of strings where strings are
usually separated by x01 characters. If there is only one
string returned the string is 0-terminated. Multiple strings
are terminated with 0 after the last string in the list, which
should be terminated with x01 as well.

GetArea - Get Instance area

 The function returns the instance area for the property
handle. In contrast to GetInstance() the function returns
the instance area as (char *) pointer regardless on
whether an instance is selected in the property handle or
not.

The function will always return a data area when the
propertyhandle has a valid description. Hence it cannot
be used for checking whether a data area is available.
For checking whether a data area has been allocated
use HasData().

i0 - Provide area for current property handle

 The function returns the area for the current property
handle.

char *PropertyHandle :: GetArea (char chkopt) const

Return value The instance area is structured according to the struc-
ture defiition (DBStructDef).

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

- 314 -

i01 - Provide area for subsequent property

 The function tries to locate the passed property and re-
turns the area for this propertyinstance when the proper-
ty exist. The function returns an error, when NULL or an
empty property path is passed.

char *PropertyHandle :: GetArea (char *prop_path, char chkopt)

const

Return value The instance area is structured according to the struc-
ture defiition (DBStructDef).

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

GetAttribute - Get attribute according to position

 The function returns the name of the attribute according
to the given index. The attribute index corresponds to
the definition of the structure. Attributes returned are
always attributes with basic (elementary) types.

Attributes in base structures or imbedded structures are
returned as property pathes (e.g. address.city when ad-
dress is a structured attribute in person). The leading
part for base structures (usually the structure name) is
displayed only when passing YES for the full_path option
(default: NO).

Generic attributes can be considered as references or as
attributes. The generic option defines whether generic
attributes are considered as attibutes (default: YES).

If there are no attributes defined for the structure the
function returns NULL. When an attribute with the given
index has been found the function returns the property
path in the fldpath.

The function returns the path in communication area of
the property handle. This area is destroyed when calling
the next PropertyHandle function.

 - 315 -

char *PropertyHandle :: GetAttribute (int32 indx0, logical

full_path, logical generic)

Return value The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

indx0 Position in collection

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

full_path Full path

 The full path option is used to request the property path
including base structure names.

Default: YES

generic Generic attruibute option

 The option allows considering generic attributes as ref-
erences.

Default: YES

GetBaseProperty - Get collection handle for base collection

 The function returns the base collection property handle
when a base collection has been defined for the collec-
tion (relationship or extent). Otherwise the function re-
turns NULL.

The returned property handle is a sub-handle for the
current property handle, i.e. the base collection will
change automatically whenever the collection in the cur-
rent property handle changes.

PropertyHandle *PropertyHandle :: GetBaseProperty ()

Return value Is a pointer to an (usually) opened property handle.

GetBufferInstance - Read instance from Buffer

 The function reads an instance from the property handle
buffer. The function returns the instance according to the
buffer position indx0. The first instance in the buffer is
addressed by 0. Usually the buffer index is not identical
with the position in the collection.

Instance PropertyHandle :: GetBufferInstance (int32 indx0)

- 316 -

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

indx0 Position in collection

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

GetCollectionID - Returns local collection identity

 Collections in ODABA have a unique identity like in-
stances, which allows identifying a collection within a
database.

int32 PropertyHandle :: GetCollectionID ()

Return value

GetCollectionProperty - Get parent collection property handle

 The function searches for the next higher collection
property handle. When the property handle is a top han-
dle or a transient property handle the function returns
NULL.

PropertyHandle *PropertyHandle :: GetCollectionProperty ()

Return value Is a pointer to an (usually) opened property handle.

GetCount - Get number of instances stored for property

 The functio returns the number of instances stored in the
collection. Since some indexes store multiple references
to instances (array index) or do not store all instances in
the index, the function returns rather the number of ref-
erences in the index than the number of instances in the
collection. Usually these numbers are, however, identi-
cal. To ensure that you get the collection cout you may
select the default order (SetOrder()).

int32 PropertyHandle :: GetCount ()

Return value

 - 317 -

GetCurrentIndex - Get cursor position

 The function returns the position of the currently selected
instance in the collection according to the selected sort
order. The function returns a value when an instance
has been located in the property handle (e.g. Locate-
Key()) regardles whether the instance has been red or
not.

Since the position might change when instances are in-
serted or removed from the collection the current index
can be used for accessing instances (Get(indx0)) in a
limited way (e.g. within a transaction).

int32 PropertyHandle :: GetCurrentIndex ()

Return value The position refers to the position of an instance refer-
ence in a local or global collection. The instance position
refers to the position according to the selected index
(sort order, -> {.r pib.SetOrder}()).

If the selected index is not unique the system decides
the order among instances with the same key value.

The position may change when inserting or deleting in-
stances (e.g. in other applications)..

GetCurrentSize - Get size for selected instance

 The function usually returns the same as GetSize. For
weak typed collections, however, the function returns the
size of the selected instance in staed of the defined type
for the collection.

uint32 PropertyHandle :: GetCurrentSize ()

Return value Size of the instance or property area.

GetCurrentType - Get type for selected instance

 The function usually returns the same as GetType. For
weak typed collections, however, the function returns the
type of the selected instance in staed of the defined type
for the collection.

char *PropertyHandle :: GetCurrentType ()

Return value The type name is passed as 0-terminated string with a
maximum length of 40 significant characters.

- 318 -

GetCurrentTypeDef - Get current type definition

 The function usually returns the same as GetType. For
weak typed collections, however, the function returns the
type definition of the selected instance in staed of the
defined type for the collection.

DBStructDef *PropertyHandle :: GetCurrentTypeDef ()

Return value The structure definition is provided in the internal format
as pointer to a DBStructDef object.

GetDBHandle - Get database handle

 The function returns the database handle for the current
property handle.

DatabaseHandle &PropertyHandle :: GetDBHandle ()

Return value This is pointer to an opened database handle. The data-
base handle can be an opened database handle Data-
baseHandle as well as an opened dictionary handle
(DictionaryHandle).

GetDate - Get Date value for property handle

 The function returns the date value for the current prop-
erty handle or for the attribute passed in prop_path.

i0

dbdt PropertyHandle :: GetDate ()

Return value The data value is passed in the internal data format.

i01

dbdt PropertyHandle :: GetDate (char *prop_path)

Return value The data value is passed in the internal data format.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

 - 319 -

GetDateTime - Get property instance as time stamp (date/time)

 The function returns the date/time value for the current
property handle or for the attribute passed in prop_path.

i0

dttm PropertyHandle :: GetDateTime ()

Return value A date-time value or time point is passed in the internal
date-time format.

i01

dttm PropertyHandle :: GetDateTime (char *prop_path)

Return value A date-time value or time point is passed in the internal
date-time format.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

GetDescription - Get property definition

 The function returns the field definition for the forperty
handle. The field definition described the structure of the
instance area for the property handle.

If the property handle is a collection the field definition
describes one instance of the collection according to the
defined structure. This is different from the field definition
of the property handle itself.

DBFieldDef *PropertyHandle :: GetDescription (char chkopt)

const

Return value The property defintion contains the metadata for the ref-
erenced property instance.

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

- 320 -

GetDictionary - Get dictionary handle

 The function returns the dictionary handle for the current
property handle.

DictionaryHandle &PropertyHandle :: GetDictionary ()

Return value An opened dictionary handle is passed.

GetDimension - Provide field dimension

 The function returns the property dimension.

In case of an error the function returns -1 (AUTO).

int32 PropertyHandle :: GetDimension () const

Return value The dimension describes the property dimension. this is
the maximum number of instances that can be stored for
the property. The function returns 0 (UNDEF) if there is
no limit (collection) or the dimension (cardinality) defined
for the property.

GetDouble - Get property instance as double value

 The function returns the value for the current property
handle or for the attribute passed in prop_path as double
value .

i0

double PropertyHandle :: GetDouble ()

Return value

i01

double PropertyHandle :: GetDouble (char *prop_path)

Return value

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

 - 321 -

GetExtentName - Get extent name for collection

 The function returns the name or path for the base col-
lection (extent name or property path). When no ase
collectin has been defined the function returns NULL.

char *PropertyHandle :: GetExtentName ()

Return value The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

GetFieldDef - Get field definition for the property

 The function returns the field definition for the property
handle (which differs in case of collection properties from
the instance definition, which is returned by GetDescrip-
tion()).

DBFieldDef *PropertyHandle :: GetFieldDef ()

Return value The property defintion contains the metadata for the ref-
erenced property instance.

GetGUID - Get global identity string for the current instance

 The function returns the global instance identity (GUID)
for the current instance. This identity is unique within all
ODABA2 databases. GUIDs are available for instances
that are derived directly or indirectly from __OBJECT.
When auto-build (GUID) is set for the structure the GUID
is generated when creating the instance. Otherwhise it
has to be provided using ProvideGUID(). When no GUID
has been defined for the structure (not derived from
__OBJECT) the function returns the local object identity
(LOID), which is a unique identifier within the database.

If no instance is available or no global identity has been
generated for the current instance the function returns
NULL.

The function returns a global instance identity also when
the property handle refers to a new instance where the
global identity has been set explicitely. Thus, e.g. when
copying instances you might ask for the global identity
that has been shipped with the source instance.

The GUID is passed in the internal result area and valid
until the next property handle function call.

char *PropertyHandle :: GetGUID ()

- 322 -

Return value The global instance identifier is passed as 0-terminated
string with a maximum length of 40 characters.

GetGenAttrType - Get generic attribute type

 The functio returns the internal type value of the generic
attribute, that has been selected as current attribute type
(SetGenAttribute()).

int32 PropertyHandle :: GetGenAttrType (char *w_propnames)

Return value The type for a generic attribute is a valid value from the
basic enumeration of the generic attribute. UNDEF (0)
indicates an undefined generic type.

w_propnames Property path or name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names. NULL is passed if no property name
is available.

GetGenOrderType - Get current type for generic sort order of
collection handle

 When the key of the currently selected sort order con-
tains a generic attribute the index is generic as well. In
this case setting the sort order implies setting it to a spe-
cific type of the generic attribute. This function returns
the internal type number for the generic attribute type
selected for the given sort order (SetOrder()).

int32 PropertyHandle :: GetGenOrderType ()

Return value The type for a generic attribute is a valid value from the
basic enumeration of the generic attribute. UNDEF (0)
indicates an undefined generic type.

GetGlobalID - Get global ID

 The function returns the local object ID (LOID) when the
instance could be found in the base collection (global
extent). When no key is passed the instance is searched
with the key from the internal instance. When passing a
key and an instance is selected in the property handle
the instance wil be unselected.

 - 323 -

i00

int32 PropertyHandle :: GetGlobalID ()

Return value The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

i01

int32 PropertyHandle :: GetGlobalID (void *skey)

Return value The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

skey Sort key

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StringToKey}())
function. Regardles on the type key values are passed
as (char *) areas.

- 324 -

GetIdentity - Get property identity string

 The function builds an identity string for a property in a
structure instance:

 loid|property_path[index]

The id-string is a local database identity for the instance.
'property_path' is the path that identifies a property with-
in the instance. When the property is an array the ele-
ment position is indicated by the index. Index numbers
may also appear within the path (e.g. when supporting
upto three addresses for a person a property path for
'place" could look like:

 199879899|address[2].place

The identity string is returned in an internal area when
no area is passed (id_string). Otherwise the area passed
in string should have 513 bytes, but at least the maxi-
mum expected string size +1.

If there is no instance selected in the (upper) collection
property handle the function returns NULL. If no id_string
is passed the function returns the path in communication
area of the property handle. This area is destroyed when
calling the next PropertyHandle function.

char *PropertyHandle :: GetIdentity (char *id_string)

Return value String that identifies a property uniquely in the database.

id_string Identity string

 String that identifies a property uniquely in the database.

GetIndexName - Name of the current index

 The function returns the index name of the index for the
n-th (indx0) index (sort order for collection). The function
returns NULL, if indx0 is equal or larger than the number
of indexes defined for the collection.

char *PropertyHandle :: GetIndexName (int32 indx0)

Return value The index or key name refers to an index defining an
order for the collection. Indexes are always referenced
by key names.

indx0 Position in collection

 - 325 -

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

GetInitArea - Provide initialized instance area

 The function provides an initialised instance of the type
defined for the property handle. For weak typed collec-
tion the type depends on the last type accessed by the
property handle or the type set with the SetType() func-
tion. Calling the function for an attribute will return an
initialized attribute instance.

When the property handle has selected an instance the
current selection is cancelled (after saving changes
made to the selected instance). You may fill attributes
and initialise single references but you cannot add in-
stances to collections in an initialised instance.

For storing the instance to the database you must call
the Add() function for the property handle. Changes
made to the instance are not saved automatically when
changing the selection for the property handle. Since no
instance is selected in the property handle after GetIni-
tArea() you cannot assign values to subordinated prop-
erty handles.

Instance PropertyHandle :: GetInitArea ()

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

- 326 -

GetInitInstance - Provide initialised instance

 The function provides an initialised instance of the type
defined for the property handle. For weak typed collec-
tion the type depends on the last type accessed by the
property handle or the type set with the SetType() func-
tion. Calling the function for an attribute will return an
initialized attribute instance.

When the property handle has selected an instance the
current selection is cancelled (after saving changes
made to the selected instance). You may fill attributes
and initialise single references but you cannot add in-
stances to collections in an initialised instance.

The instance can be stored to the database by calling
the Save() function for the property handle. Changes
made to the instance are saved automatically when
changing the selection for the property handle. To avoid
storing the instance to the database it must be explicitly
cancelled.

Instance PropertyHandle :: GetInitInstance ()

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

GetInstModCount - Get update count for selected instance

 The function returns an internal modification count for an
instance. This allows checking whether the instance has
been updated by another user or application, since each
update will increase the modification count stored in the
database.

Since the modification count is rotating (starting again
with 1 after reaching 255) this is not a save indication.
Thus, it is suggested to use server event handler for re-
acting on changes.

int16 PropertyHandle :: GetInstModCount ()

Return value The modification count contains the number of modifica-
tions for an instance. After 255 modifications it starts to
count from the beginning. Only modifications that are
written to database are counted.

 - 327 -

GetInstance - Get current instance

 The function returns the current instance. If no instance
is selected the function returns an empty instance area
(instance.GetData() returns NULL).

Instance PropertyHandle :: GetInstance () const

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

GetInstanceContext - Get Instance Context

 The function returns the Instance context for the client or
server depending on where the property handle is being
created.

CTX_Structure *PropertyHandle :: GetInstanceContext ()

Return value This is the default structure context or a user-defined
context class instance for the structure.

GetInt - Get property instance as integer value

 The function returns the integer value for the current
property handle or for the attribute passed in prop_path.
When the field definition refers to the value with decimal
precisions the value returned contains only the part be-
fore the decimal point. To get the exact value use
GetNormalized().

i0 - Get ineger value for current property

 This implementation provides an integer value for the
selected property handle.

int32 PropertyHandle :: GetInt ()

Return value

- 328 -

i01 - Get integer value for passed attribute

 This implementation returns the integer value for the
property addressed in the property path (prop_path).
The attribute passed must be a valid attribute in the
structure of the current property handle.

You may also pass "__IDENTITY" or "__LOID" to obtain
the local identity value (database identity) for the in-
stance.

int32 PropertyHandle :: GetInt (char *prop_path)

Return value

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

GetIntValue - Get property instance as integer value

 The function returns the integer value for the current
property handle or for the attribute passed in prop_path.
When the field definition refers to the value with decimal
precisions the value returned contains only the part be-
fore the decimal point. To get the exact value use
GetNormalized().

In contrast to GetInt(), no instance must be selected in
the property handle.

i0

int32 PropertyHandle :: GetIntValue ()

Return value

i01

int32 PropertyHandle :: GetIntValue (char *prop_path)

Return value

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

 - 329 -

GetKeyLength - Get ident key length

 The function returns the identifying key length.

int16 PropertyHandle :: GetKeyLength ()

Return value This is the size for the internal (structured) key according
to the attributes composing the key.

GetKeySMCB - Get ident key definition

 The function returns the structure defintion for a key
defintion of the structure defined for the property handle.
This is not necessaryly an index or sort key of the collec-
tion referenced by the property handle. When no key is
passed the function returns the key definition of the iden-
tifying key.

smcb *PropertyHandle :: GetKeySMCB (char *key_name_w)

Return value The smcb is a more general way to define structure
(DBStructDef). It contains information for the structure
and its properties. In contrast to the DBStructDef the
smcb describes structure members regardless on the
rule they may play in the structure.

key_name_w Key name for conversion

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks. If no key name is passed (NULL) the sort key
according to the selected sort order is used instead,

GetLOID - Get instance identity (LOID)

 The function returns the local object identity for the in-
stance selected in the property handle. When no in-
stance is selected the function returns 0.

When passing a key or a position the instance acording
to the passed key or position is selected before retriev-
ing the LOID.

i0

int32 PropertyHandle :: GetLOID (int32 set_pos0_w)

- 330 -

Return value The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

set_pos0_w Position in collection

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

i1

int32 PropertyHandle :: GetLOID (Key sort_key)

Return value The local object identity is a 31-bit number that identifies
an object instance uniquely in a database. LOIDs are
available only for independently stored instances but not
for instances of imbedded structures.

sort_key Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

 - 331 -

GetMode - Get access mode for collection handle

 The function returns the access mode for the property
handle as defined when creating or opening the property
handle or as set with the ChangeMode() function.

PIACC PropertyHandle :: GetMode ()

Return value Access mode that has been set for the property handle.

GetNormalized - Get normalized integer value

 The function can be used for getting integer values with
decimal precisions from INT or unsigned INT attributes.
When defining a an attribute with two decimals, referring
to the value 1, which is stored inernally as 100 (1.00),
will result in 1. Using GetNormalized will result in 100
instead.

int32 PropertyHandle :: GetNormalized ()

Return value The value is passed as platform independent 32-bit inte-
ger value.

GetObjectHandle - Get Database Object handle

 The function returns the Database Object Handle for the
property handle. When referring to transient fields, which
are not associated with a database object, the function
returns NULL.

For transient fields the function returns the database
object handle that is associated with the parent instance
and not the database object handle of the associated
collection, which might in some cases belong to another
database object.

DBObjectHandle &PropertyHandle :: GetObjectHandle ()

Return value The database object handle defines a database object
(subject) within the database. Each database has at
least a root object, which might be identically with the
database.

- 332 -

GetOrigin - Get associated property handle

 The function returns an ID that identifies the origin of a
property handle. For transient property handles thie is
the origin for the associated property handle. For copy
handles it is the origin of the copy.

The function returns UNDEF (0) when the handle is not
opened or when no property handle is associated with a
transient property handle.

int PropertyHandle :: GetOrigin ()

Return value The handle identifier allows comparing whether property
handles refer to the collection or property.

GetParentProperty - Get high property

 The function returns the next higher property handle.
The handle returnd is shared with other handles in the
application, which asked for the parent property handle.
To get a private copy you can use the copy constructor:

 ph(GetParentProperty());

GetParentProperty returns a so-called static property
handle, which is not able to react on type changes in
upper weak-typed property handles. To avoid problems
with static property handles (error 348) create a shared
property handle as described above.

PropertyHandle *PropertyHandle :: GetParentProperty ()

Return value Is a pointer to an (usually) opened property handle.

GetPrivilege - Get access privilege for reference

 The function returns the access privilege for the proper-
ty.

PIADEF PropertyHandle :: GetPrivilege ()

 - 333 -

Return value The access privilege describes the accessability of the
property.

ODC_privat - accessable within the class, only

ODC_protected - accessable from outside via get_-
functions

ODC_public - accessable from outside without re-
strictions

ODC_undefined - accessability not defined

GetPropertyContext - Get property context

 The function returns the property context for the client or
server depending on where the property handle is being
created.

CTX_Property *PropertyHandle :: GetPropertyContext ()

Return value This is the default property context or a user-defined
context class instance for the property.

- 334 -

GetPropertyHandle - Get property handle

 The function returns the property handle for the selected
path. The function handles property pathes within a
structure instance (e.g. 'direction.city', where city is a
member of the imbedded 'Address' structure of direction)
as well as pathes that include references ('moth-
er.name', where mother is a reference to a persons
mother). When defining pathes that include references
thous references shout be single referenced (dimension
= 1) since the path will locate the first instance for the
parent(s), only.

When referring to transient references you must take
into accont thet the data source referenced by the tran-
sient reference may change during processing. This in-
cludes the type of referenced instances as well as the
referenced collection or instance.

When using the GetPropertyHandle function instead of
using a property handle constructor you will share the
cursor and the data source with other property handles
provided with this function.

For creating a shared subordinated property handle you
can use the constructor in combination with the
GetPropertyHandle() function:

 PropertyHandle
ph(parent.GetPropertyHandle(prop_path));

or the corresponding Open() function.

GetPropertyHandle returns a so-called static property
handle, which is not able to react on type changes in
upper weak-typed property handles. To avoid problems
with static property handles (error 348) create a shared
property handle as described above.

i00

PropertyHandle *PropertyHandle :: GetPropertyHandle (char

*prop_path, logical *is_transient)

Return value Is a pointer to an (usually) opened property handle.

prop_path Property path

 - 335 -

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

i01

PropertyHandle *PropertyHandle :: GetPropertyHandle (char

*prop_path)

Return value Is a pointer to an (usually) opened property handle.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

GetPropertyPath - Get property path for property handle

 The property path defines the path from the parent prop-
erty handle to the current one.

char *PropertyHandle :: GetPropertyPath ()

Return value The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

GetRefModCount - Get collection update count

 The function returns an internal modification count for a
collection. This allows checking whether the collection
has been updated by another user or application by add-
ing or deleting instances from teh collection, since each
update will increase the modification count stored in the
database.

Since the modification count is rotating (starting again
with 1 after reaching 255) this is not a save indication.
Thus, it is suggested to use server event handler for re-
acting on changes.

int16 PropertyHandle :: GetRefModCount ()

Return value The modification count contains the number of modifica-
tions for an instance. After 255 modifications it starts to
count from the beginning. Only modifications that are
written to database are counted.

- 336 -

GetReference - Get reference from structure definition

 The function returns the name of the reference or rela-
tionship (except MEMO fields that are considered as
attributes) according to the given index. The reference
index corresponds to the definition of the structure.

References in base structures or imbedded structures
are returned as property pathes (e.g. address.city when
address is a structured attribute in person and city is a
reference in address). The leading part for base struc-
tures (usually the structure name) is displayed only when
passing YES for the full_path option.

Generic attributes can be considered as references or as
attributes. The generic option defines whether generic
attributes are considered as references.

If there are noreferences defined for the structure the
function returns NULL. When an reference with the given
index has been found the function returns the property
path in the fldpath.

The function returns the path in communication area of
the property handle. This area is destroyed when calling
the next PropertyHandle function.

char *PropertyHandle :: GetReference (int32 indx0, logical

full_path, logical generic)

Return value The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

indx0 Position in collection

 The position in the collection addresses the first instance
in the collection with 0. AUTO (-1) refers to an undefined
position.

full_path Full path

 The full path option is used to request the property path
including base structure names.

Default: YES

generic Generic attruibute option

 The option allows considering generic attributes as ref-
erences.

Default: YES

 - 337 -

GetSelectedKey - Get selected key value

 The function returns the key value for the selected in-
stance. When no instance is selected the function re-
turns the value for the selected key, which might have
been located wit the LocateKey() or NextKey() function.

When neither a key nor an instance is selected, the func-
tion returns an empty key instance.

Key PropertyHandle :: GetSelectedKey ()

Return value The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

GetSize - Get instance size

 The function returns the size allocated for the instance.

int32 PropertyHandle :: GetSize ()

Return value

GetSizeOf - Get size of instance in collection handle

 The function returns the size allocated for the instances
of the property handle (for weak typed the size for the
selected type). For MEMO fields the function returns the
maximum size of the MEMO field.

int32 PropertyHandle :: GetSizeOf ()

Return value

GetSortKeyLength - Get sort key length

 The function returns the length of the selected sort key.
When the collection is unordered the function returns 0.

int16 PropertyHandle :: GetSortKeyLength ()

Return value This is the size for the internal (structured) key according
to the attributes composing the key.

GetSortKeySMCB - Get sort key definition

 The function returns the key definition for the selected
sort key.

- 338 -

smcb *PropertyHandle :: GetSortKeySMCB ()

Return value The smcb is a more general way to define structure
(DBStructDef). It contains information for the structure
and its properties. In contrast to the DBStructDef the
smcb describes structure members regardless on the
rule they may play in the structure.

GetString - Get property instance as string value

 The function returns the string value for the current
property handle or for the attribute passed in prop_path.
In addition to explicite properties defined for the structure
of the instance '__LOID' and '__GUID' can be passed as
property path (prop_path) for retrieving the local object
identifier and the global unique identifier for the instance.

The function returns always a pointer to a valid string.
When the requested attribute is not available the string
length is 0.

i0 - Get string for current property

 The function returns the string value for the current
property.

char *PropertyHandle :: GetString ()

Return value Pointer to the 0-terminated string area.

i01 - Get String for referenced property

 The function tries to locate the passed property
(prop_path) and returns the string value when the prop-
erty exist. The function returns an error, when NULL or
an empty string is passed as property name.

You may also pass "__IDENTITY" or "__LOID" to obtain
the local identity value (database identity) for the in-
stance. Passing "__GUID" will return the global unique
identifier, when being defined for the object instance.

char *PropertyHandle :: GetString (char *prop_path)

Return value Pointer to the 0-terminated string area.

prop_path Property path

 - 339 -

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

GetStringLength - Provide stringlength for instance

 The function returns the maximum lengts of the string
that results from converting the instance into a string.

uint32 PropertyHandle :: GetStringLength ()

Return value Size of the instance or property area.

GetStringValue - Get property instance as string value

 The function returns the string value for the current
property handle or for the attribute passed in prop_path.
In addition to explicite properties defined for the structure
of the instance '__LOID' and '__GUID' can be passed as
property path (prop_path) for retrieving the local object
identifier and the global unique identifier for the instance.

In contrast to GetString() the no instance must be se-
lected in the property handle.

i0

char *PropertyHandle :: GetStringValue ()

Return value Pointer to the 0-terminated string area.

i01

char *PropertyHandle :: GetStringValue (char *prop_path)

Return value Pointer to the 0-terminated string area.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

- 340 -

GetStructDef - Get structure definition

 The function returns the structure definition for the in-
stances in the collection. For weak typed collection the
function returns the base structure definition defined for
the weak typed collection.

DBStructDef *PropertyHandle :: GetStructDef () const

Return value The structure definition (DBStructDef) contains the
metadata for the instance, i.e. information for the struc-
ture and its properties.

GetTime - Get property instance as time value

 The function returns the time value for the current prop-
erty handle or for the attribute passed in prop_path.

i0

dbtm PropertyHandle :: GetTime ()

Return value The time value is passed in the internal data format.

i01

dbtm PropertyHandle :: GetTime (char *prop_path)

Return value The time value is passed in the internal data format.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

GetType - Get basic collection type

 The function returns the type name for the instances in
the collection. For weak typed collection the function
returns the name of the base structure defined for the
weak typed collection.

char *PropertyHandle :: GetType ()

Return value The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

 - 341 -

GetValue - Get instance value

 The function returns the value for the property instance.
It should be used for accessing attribute handles. In con-
trast to Get the function returns an instance area also
when the attribute handle is not positioned (e.g. for the
initial instance before creating an instance).

For collection properties the function works the same
way as the Get() function except when passing AUTO as
index value. In this case GetValue returns the instance
area also when no instance is selected.

When accessing array attributes the function returns the
array element according to the passed index.

Instance PropertyHandle :: GetValue (int32 lindx0)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

lindx0 Position in collection

GetVersion - Get version number for selected instance

 The function returns the version number for the instance
selected. Since instance versions are created only in
case of updates the requested version in the property
handle might be higher than the version returned from
the current instance. The function returns the version
number, only. Fo determining the time period you can
call the ACObject::VersionIntervall() function when using
database versions.

uint16 PropertyHandle :: GetVersion ()

Return value Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

- 342 -

Group - Grouping operation

 The grouping operation allows grouping a collection of
instances according to a condition, key or list of attrib-
utes. The instances grouped are collected in a property
named 'partition', which has the same type as the input
collection for the operation.

When defining conditional values in the grouping rule, a
string attribute named 'value' is created for each output
instance. Otherwise, the output contains the attributes
defined in the attribute list or composing the key. When
passing an ODABA OQL expression as grouping rule,
the type of the attribute in the target depends on the type
returned by the expression.

When defining conditional values, the instance is asso-
ciated with the first value, that matches the condition
when passing distinct YES. Otherwise, the instance is
associated with each value that matches the condition,
which might create duplicates.

When the calling property handle refers to a non empty
collection all instances are removed before performing
the operation. When the calling property handle is empty
the function creates a temporary extend for storing the
result. You may change the buffer size for the target
property handle to increase the performance of the op-
eration. This is not necessary, when you group by sort
key.

PropertyHandle &PropertyHandle :: Group (PropertyHandle

&prophdl_ref, char *grouping_rule, logical

distinct)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

grouping_rule Grouping rule

 - 343 -

 The grouping rule describes the grouping strategy. You
may either group instances accrding to the values for a
list of attributes or a key, which is considered as attribute
list as well (country, city). You may also define attribute
values by means of conditions (low: income < 1000, me-
dium: income < 3000, high). You may also pass an
ODABA OQL expression, which will get tht name 'value',
too.

distinct Distinct option

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

HasData - Is data available for property

 The function returns true (YES) for an collection property
handle when an instance is selected. For all other prop-
erty handles the function returns true when a parent
property handle exists with a selected instance or when
no parent property handle exist (independent property
handle) and a data area has been assigned to the prop-
erty handle.

logical PropertyHandle :: HasData ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

HasDescription - Is description available

 The function returns true (YES) when a description ex-
ists for the property handle, NO otherwise.

logical PropertyHandle :: HasDescription ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

HasGenericAttributes - Does the instance have generic attrib-
utes

 The function returns true (YES) when the instance has
generic attributes and false (NO) otherwise.

logical PropertyHandle :: HasGenericAttributes ()

- 344 -

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

HasIndex - Does a collection have an index?

 The fucntion checks whether an index is defined for the
property handle or not. When an index is defined this
does not necessarily mean that the collection is ordered,
since there are also indexes for unordered collections.

logical PropertyHandle :: HasIndex ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Initialize - Initialise instance area

 The function initializes the area of the passed instance
with the defined default values. When no instance is
passed the internal instance area for the property handle
instance is initialized.

This function does not work for simple property handles
(e.g. string property handle as PH("string")). For initializ-
ing simple property handle you must explicitly pass the
instance area (ph.Initialize(ph.GetArea()).

logical PropertyHandle :: Initialize (Instance instance_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

instance_w Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a refer-
ence to a propertly structured area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

Default: Instance()

 - 345 -

InsertTerminator - Insert line terminator for large text fields

 The function inserts the terminator string (string) at the
end of the text field.

logical PropertyHandle :: InsertTerminator (char *string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

string String area

 Pointer to the 0-terminated string area.

Intersect - Intersect collections

 The result collection contains all instances that are con-
tained in each operand collections. The existence of an
instance in a collection can be checked based on the
sort key (passing YES for ik_opt) or on local identities
(LOID). Using the LOID is save but comparing the key is
much faster. Hence, the key check should be used
whenever possible.

Calling the function with one operator creates the inter-
section between the calling and the passed collection
and stores the result in the calling collection. Otherwise
the operation is performed with the passed operands
storing the result in the collection referenced by the call-
ing property handle. When the calling property handle
refers to a non empty collection all instances are re-
moved before performing the operation. When the call-
ing property handle is empty the function creates a tem-
porary extend for storing the result.

i0

PropertyHandle &PropertyHandle :: Intersect (PropertyHandle

&prop_hdl1, PropertyHandle &prop_hdl2, char

sk_opt)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prop_hdl1 First Property handle

 Reference to an opened property handle.

prop_hdl2 Second Property handle

- 346 -

 Reference to an opened property handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

i1

PropertyHandle &PropertyHandle :: Intersect (PropertyHandle

**ph_list, int16 count, char sk_opt)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

ph_list List of property handles

 An array of property handles acting as operands in the
operation. The number of property handles in the array
is passed in the count-parameter.

count Number of entries

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

i2

PropertyHandle &PropertyHandle :: Intersect (PropertyHandle

&prophdl_ref, char sk_opt)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

sk_opt Sort key option

 - 347 -

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

IsActive - Is property an active property

 An active property is a property that is able to react on
events. Active properties are treated in a special way
since events are generated for several occations.

logical PropertyHandle :: IsActive () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsAttribute - Is property an attribute?

 The function returns whether the property handle refers
to an attribute (YES) or not (NO). The functio returns
also NO for shared base structure instances, which are
considered rather as relationships than attributes. Im-
bedded base structure instances are, however, consid-
ered as attributes. The function returns NO also for ge-
neric attributes, which are considered as references.

logical PropertyHandle :: IsAttribute () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsBasedOn - Is structure derived from passed type?

 The functio returns whether the current structure of the
property handle is a specialization of the structure
passed in strnames (YES) or not (NO). When no in-
stance is selected thr function evaluates the structure
defined for the property handle.

When the current structure is identical with the structure
passed in strnames the function returns NO.

logical PropertyHandle :: IsBasedOn (char *strnames) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

strnames Structure name

- 348 -

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

IsBasetypeProperty - Is property member of the base type

 The function checks for members of weak typed in-
stances whether the property is part of the common
base type (YES) or not (NO).

logical PropertyHandle :: IsBasetypeProperty () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsBasicType - Is the type of the PropertyHandle an elementary
one ?

 The Type of the Property Handle is either a basic type or
an enumeration or a structure. The function returns YES
when the property refers to a basic type and NO other-
wise.

logical PropertyHandle :: IsBasicType () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsClient - Is property handle a client handle

 The function returns whether the property handle has
been created for a client or a local application. The func-
tion returns NO, when the handle has been created on
the server side in a client server environment.

logical PropertyHandle :: IsClient () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsCollection - Is property a collection or reference?

 The function returns whether the property handle refers
to a collection (YES) or not (NO). References and rela-
tionships are always considered as collections, as well
as generic attributes, extents and views.

logical PropertyHandle :: IsCollection (char chkopt) const

 - 349 -

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

IsCollectionUpdate - Can collection be updated

 The function returns whether the collection can be up-
dated, i.e. whether instances can be added, renamed or
removed or deleted from the collection (YES) or not
(NO).

logical PropertyHandle :: IsCollectionUpdate () const

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

IsCopyHandle - Is property handle a copy handle

 The function returns whether the property handle is a
copy from another handle (YES) or not (NO). Copy han-
dles are created based on a property handle but using
an own cursor. Copy handles are closed automatically
when its origin is closed.

logical PropertyHandle :: IsCopyHandle () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

- 350 -

IsEmpty - Is property instance empty?

 The function returns whether the property handle is emp-
ty (YES) or not (NO). A property is considered as emty
when it is a collection with no instances or (if it is not a
collection) when:

 - the value is false (LOGICAL)

 - the value is 0 (INT, REAL, Enumeration, DATE, TIME,
DATETIME)

 - the value is 0, ' ' oder 'N' (CHAR,
STRING,CCHAR,MEMO)

 - when all values for a structured instance are empty

logical PropertyHandle :: IsEmpty () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsEnumeration - Is the type of the PropertyHandle an enumera-
tion ?

 The Type of the property handle is either a basic type or
an enumeration or a structure.The function returns true
when the property handle refers to an enumeration.

logical PropertyHandle :: IsEnumeration () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsInitInstance - In instance initialized instance

 When the instance has been provided with the GetInitIn-
stance() function the instance has not yet been created
and access is limited for sub-ordinated property handles.
The function returns whether the selected instance in the
property handle is an initialised instance or not.

logical PropertyHandle :: IsInitInstance () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsMemo - Check property type for memo field

 The function returns true (YES) when the property refers
to a large text field (MEMO).

 - 351 -

logical PropertyHandle :: IsMemo (char chkopt) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

IsNewInstance - Is new instance

 The function returns whether the instance has just been
created (YES) or not (NO). The "new instance" state is
changed when the new instance is stored the first time
after creating it or when re-reading it.

Since an instance may consist of several base structure
instances that are stored independently (shared base
structures) the ney instance state for such base struc-
tures may differ from the instance state, when the in-
stance is indicated as new instance.

logical PropertyHandle :: IsNewInstance () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsNumeric - Check property type for numeric

 The functio returns true (YES) when the property handle
describes a numeric value (INT, UINT, REAL).

logical PropertyHandle :: IsNumeric () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

- 352 -

IsPositioned - Is instance positioned

 The function checks whether there is an instance select-
ed for the property handle. The function returns YES if
an existing instance is selected, NO otherwise. When
the property handle refers to an attribute with a parent
property handle it returns the state of the parent in-
stance.

When an instance has been provided using the Get-
InitInstance() function the property handle is not posi-
tioned. For checking whether an existing or new instance
is selected or not, the IsSelected() function can be used.

logical PropertyHandle :: IsPositioned (char chkopt) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

IsReadOnly - Is property read only

 There are several reasons for properties getting the
read-only state. An attribute is read-only when the in-
stance it belongs to has been set to read-only for some
reason (used by another user, cannot be updated by
current user or others). Collections are usually set to
read-only when the instance the collection belongs to
has been set to read only, but they might also be persis-
tent write protected (e.g. when being locked in work-
spaces). Since MEMO fields are stored as separate in-
stances, a MEMO field can be read-only even thought
the parent instance can be updated (e.g. when being
locked in a transaction). Moreover, any property can be
set to read-only by means of the context function
SetReadOnly() in the application.

Attributes and MEMO fields with read-only state cannot
be updated. Collection properties that are read-only do
not allow inserting, renaming or removing instances from
the collection.

logical PropertyHandle :: IsReadOnly () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

 - 353 -

IsSensitive - Is property handle sensitive against modifications

 A sensitive property is a property that is part of keys
used in global indexes. In ODABA modifications on in-
dexes will lock the index until the transaction is terminat-
ed. Thus, updating sensitive properties in long transac-
tions may cause uncomfortable lock situations. Sensitive
properties should not be allowed being updated in long
transactions.

logical PropertyHandle :: IsSensitive () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsServer - Is property handle a server handle

 The function returns whether the property handle has
been created for a server or a local application. The
function returns NO, when the handle has been created
on the client side in a client server application.

logical PropertyHandle :: IsServer () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsShareBaseHandle - Is property handle for base structure

 The function returns whether the property handle is a
handling an independent (shared) base structure (YES)
or not (NO). The function returns NO for all other proper-
ty handles, imbedded base structures and in case of
error.

logical PropertyHandle :: IsShareBaseHandle (char chkopt) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

- 354 -

IsStructure - Is the type of the PropertyHandle a defined Struc-
ture ?

 The function returns true (YES) if the type of the property
handle is a structure and false (NO) if the type of the
property handle is a basic type or an enumeration.

logical PropertyHandle :: IsStructure () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsText - Check property type for text

 The function checks whether the propertyhandle refers
to a text field (YES) or not (NO). Text fields are fields
with type CHAR, MEMO, STRING and CCHAR.

logical PropertyHandle :: IsText (char chkopt) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

chkopt Check option

 The option forces the function to check the property
handle befor running executing the function. You can
pass NO to avoid unnecessary checking.

IsTransient - Is property transient

 Attributes as well as references might be defined as
transient properties. Transient properties are filled by the
application.

logical PropertyHandle :: IsTransient () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsTrue - Is value for property TRUE?

 The function returns whether the property handle is emp-
ty (NO) or not (YES). (see IsEmpty()).

logical PropertyHandle :: IsTrue () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

 - 355 -

IsTyped - Is instance typed?

 The function returns YES when the property handle is
valid and not a VOID or week typed reference. Other-
wise the function returns NO.

logical PropertyHandle :: IsTyped () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsValid - Check for valid property handle

 The function checks whether the property handle is val-
id. The function does not check whether the handle is
opened (see {.r Check ()}.

This function should be called when the application is
not shure whether the handle is correct or not.

logical PropertyHandle :: IsValid (logical topt) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

topt

IsValidText - Checks text fields for valid characters

 The function validates a text according to the characters
passed in string. If the property handle does not refer to
a text filed or if the text contains other characters than
defined in the string the function returns false (NO).

logical PropertyHandle :: IsValidText (char *string) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

- 356 -

IsWeakTyped - Is reference weak typed

 The function returns YES if the reference or collection is
defined as weak typed. In this case the type of instances
may change from instance to instance. All instances in
the reference are bases on a common base structure.

The type of the common base structure can be retrieved
with GetStructDef(). The type for the selected instance
can be retrieved with GetCurrentType().

Befor inserting a new instance to a weak-typed
refererence the type must be set with SetType().

logical PropertyHandle :: IsWeakTyped () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

IsWrite - Can instance be updated?

 When an instance has been selected for the property
handle the function returns whether the instance can be
updated (YES) or not. The instance cannot be updated
for several reasons:

1. The property handle is opened for read, only

2. The instance is permanently write protected

3. The instance is locked by another user

4. The current applications does not have rights for up-
dateing the instance

5. The instance is an imbedded part of another instance
which cannot be updated

logical PropertyHandle :: IsWrite () const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

 - 357 -

KeyToString - Convert internal key to string

 The passed key will be converted from the internal key
instance format into an extended SDF string. As field
separator '|' is used. Structure levels are enclosed in '{}'.
Normally the key passed is assumed to be structured
according to the sort key selected for the property han-
dle or according to the identifying key (when no sort key
is defined). It is, however, also possible to pass a valid
key name for conversion.

char *PropertyHandle :: KeyToString (Key key_string, Key

key_val, char *key_name_w)

Return value The key is provided as ESDF key. {} are used as in-
stance parenthesis, | is used as property delimiter. De-
limiters may change when defined differently in the Da-
taFormat option.

key_string String area for key

 The key is provided as ESDF key. {} are used as in-
stance parenthesis, | is used as property delimiter. De-
limiters may change when defined differently in the Da-
taFormat option.

key_val Internal key value

 The key value structure corresponds to the structure of
the passed or selected key.

key_name_w Key name for conversion

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks. If no key name is passed (NULL) the sort key
according to the selected sort order is used instead,

- 358 -

Locate - Locate object by identity

 The function is searching for an instance with the given
local identity (LOID) in the collection of the property han-
dle. The function returns NO when the instance could be
located. The function returns an error (YES) in case of
an error or when the instance is not member of the col-
lection.

When passing YES for read_opt the instance is selected
in the property handle. Otherwise it is located, only and
can be read with Get(CUR_INSTANCE).

logical PropertyHandle :: Locate (int32 obident, logical

read_opt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

obident Instance identity

 The identity refers to a persistent instance that can be
refeenced within the database. Imbedded instances and
exclusive base structure instances do not have an in-
stance identity.

read_opt Read option

 The option forces the function to read the instance when
it could be located.

LocateKey - Locate instance according to key

 The instance with the passed key value will be located in
the currently selected index. In case of error or when no
instance with the given key was found the function re-
turns an error (YES). Otherwise the instance is located
and can be read with Get(CUR_INSTANCE).

Passing NO for exact the function tries to locate the in-
stance with the next higher key value.

 - 359 -

i00 - Lokate key by key value

 This implementation locates the key by means of the key
structure passed to the function. The key must be
passed according to the structure of the key including
trailing blaks.

logical PropertyHandle :: LocateKey (Key sort_key, logical exact

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

sort_key Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

exact Exact option

 The exact option forces the fuction to locate the instance
with the exact key.

Default: YES

i02 - Lokate instance by property handle

 When the property handle contains a string value, the
string will be converted into a key for locating the in-
stance. When the property handle refers to a complex
instance of the same type or a base type of the current
type in the property handle, the instance key in the
passed property handle is used for locating the key.

When the property handle contains a numeric value, no
instance is located.

logical PropertyHandle :: LocateKey (PropertyHandle &prop_hdl,

logical exact)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

- 360 -

 Is a reference to an (usually) opened property handle.

exact Exact option

 The exact option forces the fuction to locate the instance
with the exact key.

Default: YES

LocatePath - Locate path for path collection handle

 The function ensures that all property handles in a hier-
archy are positioned, i.e. an instance is selected for all
upper property handles and the calling handle itself. If no
instance is selected in any handle in the hierarchy the
function automatically tries to locate the first instance for
those property handles.

logical PropertyHandle :: LocatePath ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Lock - Lock instance

 This function allows locking the selected instance of the
property handle within the application. As long as the
instance is locked no other user is able to access the
instance. Instances for shared base structures are not
automatically included in the locking and must be locked
separately. Locked instances can be unlocked using the
Unlock() function. They are automatically unlocked,
when another instance is selected in the property han-
dle.

The function returns NO when the instance has been
locked successfully. It returns en error (YES) when the
instance is already locked by another application, when
no instance is selected in the property handle or when
an error occurred.

logical PropertyHandle :: Lock ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 361 -

LockSet - Lock collection

 This function allows locking a collection handle refer-
enced in a collection property handle within the applica-
tion. As long as the collection is locked no other user is
able to access the collection. Locked collection can be
unlocked using the UnlockSet() function. The collection
is automatically unlocked, when the property handle is
closed or another instance is selected in the upper prop-
erty handle.

The function returns NO when the collection has been
locked successfully. It returns en error (YES) when the
collection is already locked by another application, when
no instance is selected in the upper property handle
(when existing) or when an error occurred.

logical PropertyHandle :: LockSet ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

MarkUnused - Mark property handle as unused

 When referring a property handle recursively this may
result in never deleting the resources allocated with the
property handle. Recursive references to property han-
dles may happen when setting transient references
(SetTransientProperty()) to an upper property handle. In
this case the programm has to mark the property handle
as unused. Property handles marked as unused must be
marked as used befor being closed or replaced (Copy-
Handle()).

Using this function improperly (e.g. after constructing a
property handle) may release the resources allocated to
the property handle immediately.

void PropertyHandle :: MarkUnused ()MarkUsed - Mark proper-
ty handle as used

 A property handle should be marked as used before be-
ing closed or replaced in a recursive reference.

void PropertyHandle :: MarkUsed ()Minus - Substract collec-
tions

- 362 -

 The result collection contains all instances that exist in
the first but not in the second operand collection. The
existence of an instance in a collection can be checked
based on the sort key (passing YES for ik_opt) or on
local identities (LOID). Using the LOID is save but com-
paring the key is much faster. Hence, the key check
should be used whenever possible.

Calling the function with one operator creates the differ-
ence collcetion between the calling (first operand) and
the passed collection and stores the result in the calling
collection.

Otherwise the operation is performed with the passed
operand collectios storing the result in the collection ref-
erenced by the calling property handle. When the calling
property handle refers to a non empty collection all in-
stances are removed before performing the operation.
When the calling property handle is empty the function
creates a temporary extend for storing the result.

i0

PropertyHandle &PropertyHandle :: Minus (PropertyHandle

&prop_hdl1, PropertyHandle &prop_hdl2, char

sk_opt)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prop_hdl1 First Property handle

 Reference to an opened property handle.

prop_hdl2 Second Property handle

 Reference to an opened property handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

 - 363 -

i1

PropertyHandle &PropertyHandle :: Minus (PropertyHandle

&prophdl_ref, char sk_opt)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

Modify - Mark property as modified

 The function marks the instance selected in the property
handle as modified. This is usually done automatically
when assigning a value to a property handle. When,
however, writing data directly to the instance the Modi-
fy() function must be called to register the modification.
Otherwise the modification will not be stored to the data-
base.

The function returns NO when executed successfully.
When no instance is selected or in case of an error the
function returns an error (YES).

logical PropertyHandle :: Modify ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 364 -

Move - Move instance to another collection

 The function moves an instance from the source collec-
tion (source_handle) to the collection of the current
property handle. This is the only way, to move depend-
ent or owned instances from one collection to another
one. It is also a save way to copy instances avoiding
duplicate key problems, that may result from the inverse
reference for local collections. The function allows also
moving instances between distinct sub-collections of an
extent.

When the type of source and target instance is the same
and when both, source and target property handle have
been opened for the same database handle, the in-
stance is removed from the source collection and insert-
ed into the target collection. In this case the instance
does not change the local and global identity. When the
two collection differ in type, the instance is copied from
the source to the target collection and removed/deleted
from the source collection afterwards.

When replacing existing instances is required the in-
stance is identified in the target collection by key accord-
ing to the sort order set for the target collection. When a
unique sort order is set and an instance with the same
key as the source instance does already exist, the in-
stance is removed/deleted from the target collection be-
fore moving the source instance to the target collection.

The function returns an instance handle to the instance
selected in the property handle (instance moved). The
function returns an empty instance handle, when the it
terminates with error.

i00 - Move without rename

 The function moves the instance without renaming.
When the instance exists in the target collection the
function returns an error.

Instance PropertyHandle :: Move (PropertyHandle &source_handle,

PIREPL replopt)

 - 365 -

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

source_handle Source property handle

 The source property handle must be opened and an in-
stance must be selected in the handle.

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

i01 - Move with rename

 The function allows renaming an instance while moving
it to the target collection. When the new key does al-
ready exist in the target collection the instance is over-
written depending on the replace option.

Instance PropertyHandle :: Move (PropertyHandle &source_handle,

Key new_key, PIREPL replopt)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

source_handle Source property handle

 The source property handle must be opened and an in-
stance must be selected in the handle.

new_key New key for the instance

- 366 -

 The key passed for renaming the instance must be
structured according to the currently selected sort order.

replopt Replace option

 The replace option controls the behaviour of the copy
function. Options that can be used here are:

REPL_none - do not replace existing instances

REPL_direct - copy attributes, only (but no global identi-
ties)

REPL_GUID - copy attributes including global identity

REPL_local - replace collections owned by the instance

REPL_all - replace primary relationships

REPL_no_create - copy primary relationships without
creating new instances

MoveDown - Move instance down

 In an unordered collection or in a collection ordered by
__AUTOIDENT the position of an instance can be
moved up or down. Moving the instance down in an un-
ordered position will change the position of the instance,
only. Mowing it down in a collction ordered by
__AUTOIDENT will update the identifying number of the
instance.

The function will not change the position for instances in
any other type of collection.

logical PropertyHandle :: MoveDown ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 367 -

MoveUp - Move instance one position up

 In an unordered collection or in a collection ordered by
__AUTOIDENT the position of an instance can be
moved up or down. Moving the instance up in an unor-
dered position will change the position of the instance,
only. Mowing it up in a collction ordered by
__AUTOIDENT will update the identifying number of the
instance.

The function will not change the position for instances in
any other type of collection.

logical PropertyHandle :: MoveUp ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

NextKey - Locate next key

 The function tries to locate the next key according to the
selected order starting from the selected or located in-
stance. When passing a key the instance with this key or
the next lower (if not existing) is the starting point. The
function locates the key next to the starting point. The
function returns the next key located or an empty Key
handle in case of an error. When calling the function for
indexes allowing duplicate key values, NextKey returns
also duplicates.

The instance is located but not selected in the property
handle. It cen be selected calling Get(CUR_INSTANCE)
after calling NextKey(). Since the function is not reading
instances but parsing the index only, it provides fast ac-
cess to the keys of a collection.

Passing a switch_level allows defining the last key com-
ponents that must alter. This allows e.g. reading all in-
stances for key duplicates when fixing the lats key com-
ponent.

Key PropertyHandle :: NextKey (Key sort_key_w, int16

switch_level)

- 368 -

Return value The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StringToKey}())
function. Regardles on the type key values are passed
as (char *) areas.

sort_key_w Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.

Default: Key() (empty key)

switch_level Number of fixed key component

 The switch level defines the key component number that
must not change when calling NextKey beginning with 0
for the first key component.

Default: AUTO

NoWrite - Is instance write protected?

 The function returns whether the instan can be updated
(NO) or not (YES).

(-> IsWrite())

logical PropertyHandle :: NoWrite ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

 - 369 -

Open - Open property handle

 Open property handle opens a property handle for a
persistent or transient data source. A data source is a
collection, object instance or an elementary database
field. A data source contains the data for a property of a
specific object. Usually property handles are opened
when constructimg them. You can, hawever, create an
unopened property handle using the dummy constructor
(without parameters) or by closing another property han-
dle.

If the property handle to be opened is a subsequent
property handle the parend must be opened. The data-
source provided in the subsequent property handle de-
pends on the parents property handle current selection
and will be provided automatically whenever the parent
property handle changes its current selection.

You can open static property handles for constants or
other elementary data sources as well as for structured
instances or transient collections using the appropriate
open function.

When applying the Open() function to a property handle
that has been opened previously the handle is closes
implicitely before reopening. You cannot reopen property
handles that have been provided with GetPropertyHan-
dle().

When creating a copy handle sort order and selected
instance are set in the copy handle as well.

c1 - Open non sharing copy for a property handle

 The function opens a copy of the passed property han-
dle with an own cursor and an own instance area.

logical PropertyHandle :: Open (const PropertyHandle &cprop_hdl

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

- 370 -

c2 - Open a sharing copy for a property handle

 The function opens a copy of the passed property han-
dle that shares the instance area and cursor with its
origin.

logical PropertyHandle :: Open (PropertyHandle *property_handle

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

property_handle Pointer to a property handle

 Is a pointer to an (usually) opened property handle.

d1 - Open subordinated property handle

 The function openes a subordinated property handle of
the instance. Since the property handlels for instance
properties are part of the instance the function creates a
copy handle with an own cursor. It behaves, however,
like a normal subordinated property handle, that de-
pends on the selection in the upper property handle (if
there is any).

logical PropertyHandle :: Open (PropertyHandle &prop_hdl, char

*prop_path)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

 - 371 -

d2 - Open subordinated property handle

 The constructor provides a subordinated property handle
of the instance. Since property handlels for an instance
are part of the instance the function provides a property
handle that shares area and cursor with the property
handle in the instance. As subordinated property handle
it depends on the selection in the upper property handle
(if there is any).

logical PropertyHandle :: Open (PropertyHandle *property_handle,

char *prop_path)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

property_handle Pointer to a property handle

 Is a pointer to an (usually) opened property handle.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

d3 - Open extent property handle

 The function opens a property handle for a global collec-
tion (extent). The extent name passed may contain sym-
bolic references to system variables (e.g.
"%EXT_PREF%Pers") which are resolved according to
the current setting of the referenced system variables. A
key name can be passed to set the sort order for the
property handle. If no key is passed the sort order is set
to the default order.

You may open a transient extent that stores data only in
main storage by passing the transient_w option.

logical PropertyHandle :: Open (const DBObjectHandle

&obhandle_refc, char *extnames, PIACC accopt,

logical transient_w, char *key_name_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 372 -

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

extnames Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

transient_w Transient option

 To create transient property handles transient=YES has
to be passed. In this case the property handle instences
and indexes are stored in main storage, only.

Default: NO

key_name_w Key name for conversion

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks. If no key name is passed (NULL) the sort key
according to the selected sort order is used instead,

d5 - Open property handle for temporary extent

 The function opens a property handle for a temporary
extent for storing results of set operations. Temporary
extents are stored in a separate temporary file and are
available only as long as the process runs.

logical PropertyHandle :: Open (const DBObjectHandle

&obhandle_refc, char *strnames, char *keyname,

char *baseexts_w, logical weak_opt_w, logical

own_opt_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

 - 373 -

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

keyname Name of sort key

 The order key name must be a key name defined for the
given structure. The sort key is passed as 0-terminated
string with maximum 40 characters.

baseexts_w Name for base extent

 A base extent or base collection can be passed that de-
fines a superset for the temporary extent. The extent
name is passed as 0-terminated string with maximum 40
characters.

weak_opt_w Weak-typed option

 This option must be true (YES) when a collection may
refer to instances of differet types, wich are based on the
same base structure.

own_opt_w Owning collection

 This option must be set to true (YES) if the collection
owns the instances it is referring to. In this case the col-
lection may not refer to instances from other collections.
Removing instances from an owning collection will result
in deleting the instance completely.

d8 - Open a view property handle

 The function opens a view property handle based on the
view definition passed to the function. The view is
opened relatively to the property handle passed as
prop_hdl or as view in a global context when passing an
empty property handle. The view can be opened in read,
update or write mode (accopt).

logical PropertyHandle :: Open (const DBObjectHandle

&obhandle_refc, DBViewDef &view_def, Proper-

tyHandle &prop_hdl, PIACC accopt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 374 -

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

view_def View definition

 A view definition defines the elements ans selection
condition for a view.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

d9 - Open operation property handle

 Operation property handles can be opened in order to
define a set operation as sub-ordinated property handle.
Operation property handles can be used within path
properties acting like a normal property handle, except
that one cannot create new instances. Depending to the
operation type operation property handle pass instance
by instance (e.g. where) or do calculate the complete
result set before passing the first instance.

logical PropertyHandle :: Open (OperationTypes operation_type,

PropertyHandle &prop_hdl, char sk_opt, logical

distinct, char *rule)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

operation_type Operation type

 - 375 -

 The operation type describes the set operation to be
performed in a view or operational path. When referring
to operations the following property names should not be
used, since they are interpreted as operations (not case
sensitive):

select, define

having, where

group_by, group

order, order_by

from

minus

intersect

join

update

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

distinct Distinct option

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

rule OPeration rule

 Depending on the operation type the operation rule de-
scribes the details. Unsually, the rule is provided as
ODABA OQL expression (where, group), but other for-
mats are possible as well.

- 376 -

d9a - Open operation property handle (top)

 Operation property handles can be opened in order to
define a set operation. As top-handle, the number of
setoperations, that can be defind, is limited to FROM
(product). Operation property handles can be used with-
in path properties acting like a normal property handle.
The top operation property handle passes instance by
instance on request. Sequential forward access is the
most efficient one.

logical PropertyHandle :: Open (OperationTypes operation_type,

DBObjectHandle &object_handle, char sk_opt,

logical distinct, char *rule)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

operation_type Operation type

 The operation type describes the set operation to be
performed in a view or operational path. When referring
to operations the following property names should not be
used, since they are interpreted as operations (not case
sensitive):

select, define

having, where

group_by, group

order, order_by

from

minus

intersect

join

update

object_handle Database Object handle

 This is a pointer to an opened Database Object handle.

sk_opt Sort key option

 - 377 -

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

distinct Distinct option

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

rule OPeration rule

 Depending on the operation type the operation rule de-
scribes the details. Unsually, the rule is provided as
ODABA OQL expression (where, group), but other for-
mats are possible as well.

i01 - Open subordinated property handle

 The function opens a subordinated property handle for
an unbound data instance (a data instance that is not
connected to the database). The property handle has no
connection to the database and does not support data-
base access functions.

The data area is the data area of the property in the in-
stance passed to the function. If no instance is passed,
no data area is allocated. This can be done later using
the SetInstance() function.

logical PropertyHandle :: Open (DBStructDef *struct_def, char

*prop_names, char *instance)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

struct_def Pointer to generel structure definition

 The structure definition (DBStructDef) contains the
metadata for the instance, i.e. information for the struc-
ture and its properties.

prop_names Property name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names.

- 378 -

instance Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

i11 - Open an unbound property handle

 The function opens an unbound property handle accord-
ing to the field definition (field_def) passed to the con-
structor. An initial value can be passed as string value to
initialize the data area allocated for the property handle.

logical PropertyHandle :: Open (Dictionary *dictptr, DBFieldDef

*field_def, char *init_string, logical in-

it_opt, logical const_opt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dictptr Dictionary handle

 An opened dictionary handle is passed.

field_def Property definition

 The property defintion contains the metadata for the ref-
erenced property instance..

init_string Initial value

 The initial value for the property is passed as 0-
terminated string.

init_opt Initialize option

const_opt Constant Option

 Defines a property handle as constant.

 - 379 -

i12 - Open an unbound property handle

 The function opens an unbound property handle accord-
ing to the type passed in typenames and the properties
passsed to the function. An initial value can be passed
as string value to initialize the data area allocated for the
property handle.

logical PropertyHandle :: Open (Dictionary *dictptr, char

*prop_names, char *typenames, SDB_RLEV

ref_level, uint16 size, uint16 precision,

uint16 dimension, char *init_string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dictptr Dictionary handle

 An opened dictionary handle is passed.

prop_names Property name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names.

typenames Type name

 The type name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

ref_level Reference level

 The reference level describes the way and the level of
instance references.

size Size

 Size of the instance or property area.

precision Precision

 The precision defines the number of decimal positions
behind the decimal point for numerical valued. For date
and time values it defines the way of presenting the val-
ues in charachter presentations.

dimension Dimension

- 380 -

 The dimension describes the property dimension. this is
the maximum number of instances that can be stored for
the property. The function returns 0 (UNDEF) if there is
no limit (collection) or the dimension (cardinality) defined
for the property.

init_string Initial value

 The initial value for the property is passed as 0-
terminated string.

i13 - Open an unbound property handle with type name

 The function opens an unbound property handle accord-
ing to the type passed in typenames.

logical PropertyHandle :: Open (Dictionary *dictptr, char

*typenames)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dictptr Dictionary handle

 An opened dictionary handle is passed.

typenames Type name

 The type name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

i14 - Opening an unbound property handle with database definition

 The function opens an unbound property handle accord-
ing to the dictionary SDB_Member definition passed to
the function (dbmptr).

logical PropertyHandle :: Open (DictionaryHandle &dict_handle,

SDB_Member *dbmptr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dict_handle Dictionary handle

 - 381 -

 The dictionary handle usually refers to an opened dic-
tionary. To check whether a dictionary is opened you
can use the !-operator.

dbmptr Member definition

i20 - Open an unbound property handle with structure definition

 The function opens an unbound property handle for an
unbound data instance (a data instance that is not con-
nected to the database). The property handle has no
connection to the database and does not support data-
base access functions.

The instance passed to the function (instance) is set as
instance area for the property handle, i.e. the handle
shares the data area with the application.

logical PropertyHandle :: Open (DBStructDef *strdef, char

*instance)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

strdef Structure definition

 The structure definition is provided in the internal format
as pointer to a DBStructDef object.

instance Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

i21 - Open an unbound property handle

 The function opens an unbound property handle accord-
ing to the field definition (field_def) passed to the con-
structor. An initial value can be passed according to the
type of the property handle to initialize the data area al-
located for the property handle.

logical PropertyHandle :: Open (DBFieldDef *field_def, Instance

initinst)

- 382 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

field_def Property definition

 The property defintion contains the metadata for the ref-
erenced property instance..

initinst Initializing instance

 Instance for initializing the instance area for the property
handle.

u1 - Open property handle for a 32-bit integer value

 The function opens an unbound property handle for a
platform independent 32-bit integer value (int32).

logical PropertyHandle :: Open (int32 int_val)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

int_val Integer value

u2 - Open property handle for a string value

 The function opens an unbound property handle for a
string value (STRING). The area is allocated with the
size of the string passed to the constructor. The string is
copied into the instance area owned by the property
handle. To enable dynamical resize featur for the proper-
ty handle use the SetDynLength() function.

logical PropertyHandle :: Open (char *string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

string String area

 Pointer to the 0-terminated string area.

 - 383 -

u3 - Open property handle for a string value

 The function opens an unbound property handle for a
string value (STRING). The area is set to the string
pointer passed to the function.

logical PropertyHandle :: Open (char *string, int32 string_len)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

string String area

 Pointer to the 0-terminated string area.

string_len String length

 The string length defines the maximum number of char-
acters that can be stored in the string area without
counting the terminating 0. Usually this value is 1 less
that the allocated string area.

u4 - Open property handle for a double value

 The function opens an unbound property handle for a
double value (REAL).

logical PropertyHandle :: Open (double dbl_value)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbl_value Double value

u5 - Open property handle for a date value

 The function opens an unbound property handle for a
date value (DATE).

logical PropertyHandle :: Open (dbdt date_val)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

date_val Date value

- 384 -

 The data value is passed in the internal data format.

u6 - OPen property handle for a time value

 The function opens an unbound property handle for a
time value (TIME).

logical PropertyHandle :: Open (dbtm time_val)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

time_val Time value

 The time value is passed in the internal data format.

u7 - Open property handle for a date/time value

 The function opens an unbound property handle for a
date/time value (DATETIME).

logical PropertyHandle :: Open (dttm datetime_val)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

datetime_val Date-Time value

 A date-time value or time point is passed in the internal
date-time format.

u8 - Open property handle for a logical value

 The function opens an unbound property handle for a
logical value (LOGICAL).

logical PropertyHandle :: Open (logical logval)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

logval Logical value

 Is a logical (bool) value.

 - 385 -

x1 - Open an undefined property handle

 The function opens an undefined and unbound property
handle. Before using the property handle definition and
instance area must be set.

logical PropertyHandle :: Open ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

OpenAccessPath - Open Access Path

 An access path is a complex expression, which allows
defining an extended view to the database. This includes
the features of SQL and OQL, which are also included in
the ODABA View definition, but adds some more ODA-
BA specific facilities. Details for defining an access path
are described in 'ODABA User's Guide'.

After Opening an acess path it is not inilialized, i.e.
metadata is not yet available. The access path will be
initialized whwn calling the Get() or ToTop() function.

Accesspathes are used read only. Only in some special
cases you may open the access path in update mode.

i00

logical PropertyHandle :: OpenAccessPath (PropertyHandle

&prop_hdl, BNFData *parm_data)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01

logical PropertyHandle :: OpenAccessPath (PropertyHandle

&prop_hdl, ACObject *obhandle, BNFData

*parm_data)

- 386 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

i02

logical PropertyHandle :: OpenAccessPath (PropertyHandle

&prop_hdl, char *path_prop)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i03

logical PropertyHandle :: OpenAccessPath (PropertyHandle

&prop_hdl, ACObject *obhandle, char *path_prop

)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

 - 387 -

i04

logical PropertyHandle :: OpenAccessPath (ACObject *obhandle,

BNFData *parm_data, PIACC access_mode)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

access_mode Access mode

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

Default: PI_Read

i05

logical PropertyHandle :: OpenAccessPath (ACObject *obhandle,

char *path_prop, PIACC access_mode)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

obhandle Database Object Handle

 This is the database object handle or the database han-
dle when referring to the root object or the dictionary
handle when referring to the root object of the dictionary
database.

access_mode Access mode

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

Default: PI_Read

- 388 -

OpenHierarchy - Open hierarchy property handle

 The function opens a hierarchy property handle, which
creates a property handle for bottom property handle.
The function will duplicate the complete hierarchy includ-
ing the top property handle. The function copies the se-
lectins from the source hierarchy, i.e. the result contains
the same selected instance as the source hierarchy.

The function returns a property handle for the collection
in the bottom property handle. Upper parent property
handle, which have been created by the function, will be
destructed automatically when destroying the bottom
property handle. When no top property handle is passed
or when the top property handle is not part of the source
hierarchy, the returned hierarchy ends with the extent
property handle for the bottom property handle.

You may access upper property handles by referring
parent property handle with the GetParentProperty()
function. Since all parents are copies, you may change
the selection in any parent handle without danger.

When passing true (YES) for path option, the function
will turn the property hierarchy into a path property,
which automatically iterates on higher levels.

When the source handle is opened in write mode or
when any of the property handles in the hierarchy are
opened in write mode, the copy might refer to a write
protected instance. You can use the Refresh() function
to remove the write protection, after instances have been
released in the other hierarchy.

The root for the hierarchy it the top handle of the hierar-
chy. Since this is a copy handle, the complete hierarchy
will be closed, when closing the origin handle (or the
extend node) implicitly or explicitly.

logical PropertyHandle :: OpenHierarchy (PropertyHandle

*bottom_ph, PropertyHandle *top_ph, logical

path_opt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

bottom_ph Lowest property handle

 - 389 -

 This is a pointer to the lowest property handle in a hier-
archy or property path.

top_ph Highest property handle

 This is a pointer to the top property hande in a hierarchy
or property path. When the pointer is NULL, the top
property handle is the extent, which is the root of the
path.

path_opt Path oprtion

 The option indicates, that a peth property will be ctreat-
ed.

OwnsData - Owns data area

 The function returns whether the property handle owns
its data area YES) or whether the area is shared with
another property handle (NO).

logical PropertyHandle :: OwnsData ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

Position - Select an instance relative to the current selection

 The function allow selecting an instance relatively to the
currently selected instance. Thus the function allows
selecting the next instance in the collection as Posi-
tion(1) or the previous instance as Position(-1).

The function returns NO when the instance could be se-
lected. When no instance could be selected or an error
occurred the function returns an error (YES).

logical PropertyHandle :: Position (int16 count)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

count Number of entries

PositionTop - Position parent collections

 The function selectes an instance (first instance) for all
upper property handles that are not positioned. The se-
lection for the property handle itself remains unchanged.

- 390 -

logical PropertyHandle :: PositionTop ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Power - Raise to power of

 The power function is supported for numerical data, only.
If passed property handle is not numerical the function
tries to convert it into a numerical value. If no conversion
is possible the operation fails. The function calculates
the value of the property handle raised to the power of
the passed value.

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

PropertyHandle PropertyHandle :: Power (PropertyHandle &prop_hdl

)

Return value

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

 - 391 -

PropertyHandle - Constructor

 The property handle constructor creates and openes a
property handle for a persistent or transient data source.
A data source is a collection, object instance or an ele-
mentary database field. A data source contains the data
for a property of a specific object. Except for the dummy
constructor (no parameter) property handle are opened
when being constructed sucessfully. To check teh suc-
cess you can use the IsValid() or Check() function.

Cunstructing a subsequent property handle (passing the
parent property handle and the property name to the
constructor) the parend must be opened. The data-
source provided in the subsequent property handle de-
pends on the parents property handle current selection
and will be provided automatically whenever the parent
property handle changes its current selection.

You can create static property handles for constants or
other elementary data sources as well as for structured
instances or transient collections using the appropriate
constructur function.

c1 - Create non sharing copy for a property handle

 The constructor creates a copy of the passed property
handle with an own cursor and an own instance area.

 PropertyHandle :: PropertyHandle (const

PropertyHandle &cprop_hdl)

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

c2 - Create a sharing copy for a property handle

 The constructor creates a copy of the passed property
handle that shares the instance area and cursor with its
origin.

 PropertyHandle :: PropertyHandle (Prop-

ertyHandle *property_handle)

property_handle Pointer to a property handle

 Is a pointer to an (usually) opened property handle.

- 392 -

d0 - Create copy handle

 The constructor creates a copy property handle that
shares area and cursor with the handle passed as
nodeptr.

 PropertyHandle :: PropertyHandle (node

*nodptr)

nodptr

d1 - Create subordinated property handle

 The constructor provides a subordinated property handle
of the instance. Since the property handlels for instance
properties are part of the instance the function creates a
copy handle with an own cursor. It behaves, however,
like a normal subordinated property handle, that de-
pends on the selection in the upper property handle (if
there is any).

 PropertyHandle :: PropertyHandle (Prop-

ertyHandle &prophdl_ref, char *prop_names)

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

prop_names Property name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names.

d2 - Create subordinated property handle

 The constructor provides a subordinated property handle
of the instance. Since property handlels for an instance
are part of the instance the function provides a property
handle that shares area and cursor with the property
handle in the instance. As subordinated property handle
it depends on the selection in the upper property handle
(if there is any).

 PropertyHandle :: PropertyHandle (Prop-

ertyHandle *property_handle, char *prop_path)

property_handle Pointer to a property handle

 Is a pointer to an (usually) opened property handle.

prop_path Property path

 - 393 -

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

d3 - Create extent property handle

 The constructor creates a property handle for a global
collection (extent). The extent name passed may contain
symbolic references to system variables (e.g.
"%EXT_PREF%Pers") which are resolved according to
the current setting of the referenced system variables.

 PropertyHandle :: PropertyHandle (const

DBObjectHandle &obhandle_refc, char *extnames,

PIACC accopt)

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

extnames Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

d4 - Create extent property handle

 The constructor creates a property handle for a global
collection (extent). The extent name passed may contain
symbolic references to system variables (e.g.
"%EXT_PREF%Pers") which are resolved according to
the current setting of the referenced system variables. A
key name can be passed to set the sort order for the
property handle. If no key is passed (NULL) the sort or-
der is set to the default order.

 PropertyHandle :: PropertyHandle (const

DBObjectHandle &obhandle_refc, char *extnames,

char *keynames, PIACC accopt, logical transi-

ent_w)

obhandle_refc Const reference to database object handle

- 394 -

 The reference refers to an opened or not opened data-
base object handle.

extnames Extent name

 The extent name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

keynames Key name

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

transient_w Transient option

 To create transient property handles transient=YES has
to be passed. In this case the property handle instences
and indexes are stored in main storage, only.

Default: NO

d5 - Create property handle for temporary extent

 The constructor creates a property handle for a tempo-
rary extent for storing results of set operations. Tempo-
rary extents are stored in a separate temporary file and
are available only as long as the process runs.

 PropertyHandle :: PropertyHandle (const

DBObjectHandle &obhandle_refc, char *strnames,

char *keyname, char *baseexts_w, logical

weak_opt_w, logical own_opt_w)

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

keyname Name of sort key

 - 395 -

 The order key name must be a key name defined for the
given structure. The sort key is passed as 0-terminated
string with maximum 40 characters.

baseexts_w Name for base extent

 A base extent or base collection can be passed that de-
fines a superset for the temporary extent. The extent
name is passed as 0-terminated string with maximum 40
characters.

weak_opt_w Weak-typed option

 This option must be true (YES) when a collection may
refer to instances of differet types, wich are based on the
same base structure.

own_opt_w Owning collection

 This option must be set to true (YES) if the collection
owns the instances it is referring to. In this case the col-
lection may not refer to instances from other collections.
Removing instances from an owning collection will result
in deleting the instance completely.

d6 - Create a global view property handle

 The constructor creates a view property handle based
on the view definition passed to the function. The view is
opened in a global context. The view can be opened in
read, update or write mode (accopt).

 PropertyHandle :: PropertyHandle (const

DBObjectHandle &obhandle_refc, DBViewDef

&view_def, PIACC accopt)

obhandle_refc Const reference to database object handle

 The reference refers to an opened or not opened data-
base object handle.

view_def View definition

 A view definition defines the elements ans selection
condition for a view.

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

- 396 -

d7 - Create a relative view property handle

 The constructor creates a view property handle based
on the view definition passed to the function. The view is
opened relatively to the property handle passed as
prop_hdl. The view can be opened in read, update or
write mode (accopt).

 PropertyHandle :: PropertyHandle

(DBViewDef &view_def, PropertyHandle

&prop_hdl, PIACC accmode)

view_def View definition

 A view definition defines the elements ans selection
condition for a view.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

accmode Access mode

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

d8 - Create a relative or global view property handle

 The function opens a view property handle based on the
view definition passed to the function. The view is
opened relatively to the property handle set in the view
definiition or as view in a global context when this prop-
erty handle is empty. The view can be opened in read,
update or write mode (accopt).

 PropertyHandle :: PropertyHandle

(DBViewDef &view_def, PIACC accmode)

view_def View definition

 A view definition defines the elements ans selection
condition for a view.

accmode Access mode

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

 - 397 -

d9 - Operation Property Handle

 Operation property handles can be created in order to
define a set operation as sub-ordinated property handle.
Operation property handles can be used within path
properties acting like a normal property handle. Depend-
ing to the operation type operation property handle pass
instance by instance (e.g. where) or do calculate the
complete result set before passing the first instance. Se-
quential forward access is the most efficient one.

 PropertyHandle :: PropertyHandle (Opera-

tionTypes operation_type, PropertyHandle

&prop_hdl, char sk_opt, logical distinct, char

*rule)

operation_type Operation type

 The operation type describes the set operation to be
performed in a view or operational path. When referring
to operations the following property names should not be
used, since they are interpreted as operations (not case
sensitive):

select, define

having, where

group_by, group

order, order_by

from

minus

intersect

join

update

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

distinct Distinct option

- 398 -

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

rule OPeration rule

 Depending on the operation type the operation rule de-
scribes the details. Unsually, the rule is provided as
ODABA OQL expression (where, group), but other for-
mats are possible as well.

d9a - Operation Property Handle

 Operation property handles can be created in order to
define a set operation. As top-handle, the number of
setoperations, that can be defind, is limited to FROM
(product). Operation property handles can be used with-
in path properties acting like a normal property handle.
The top operation property handle passes instance by
instance on request. Sequential forward access is the
most efficient one.

 PropertyHandle :: PropertyHandle (Opera-

tionTypes operation_type, DBObjectHandle

&object_handle, char sk_opt, logical distinct,

char *rule)

operation_type Operation type

 The operation type describes the set operation to be
performed in a view or operational path. When referring
to operations the following property names should not be
used, since they are interpreted as operations (not case
sensitive):

select, define

having, where

group_by, group

order, order_by

from

minus

intersect

join

update

object_handle Database Object handle

 - 399 -

 This is a pointer to an opened Database Object handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

distinct Distinct option

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

rule OPeration rule

 Depending on the operation type the operation rule de-
scribes the details. Unsually, the rule is provided as
ODABA OQL expression (where, group), but other for-
mats are possible as well.

i01 - Create subordinated property handle

 The constructor creates a subordinated property handle
for an unbound data instance (a data instance that is not
connected to the database). The property handle has no
connection to the database and does not support data-
base access functions.

The data area is the data area of the property in the in-
stance passed to the function. If no instance is passed,
no data area is allocated. This can be done later using
the SetInstance() function.

 PropertyHandle :: PropertyHandle

(DBStructDef *strdef, char *prop_names, In-

stance instance_w)

strdef Structure definition

 The structure definition is provided in the internal format
as pointer to a DBStructDef object.

prop_names Property name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names.

instance_w Instance area

- 400 -

 Instances do have the type of the referenced property
handle (collection type). The instance contains a refer-
ence to a propertly structured area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

Default: Instance()

i11 - Create unbound property handle

 The constructor creates an unbound property handle
according to the field definition (field_def) passed to the
constructor. An initial value can be passed as string val-
ue to initialize the data area allocated for the property
handle.

 PropertyHandle :: PropertyHandle (Dic-

tionary *dictptr, DBFieldDef *field_def, char

*init_string, logical init_opt, logical

const_opt)

dictptr Dictionary handle

 An opened dictionary handle is passed.

field_def Property definition

 The property defintion contains the metadata for the ref-
erenced property instance..

init_string Initial value

 The initial value for the property is passed as 0-
terminated string.

init_opt Initialize option

const_opt Constant Option

 Defines a property handle as constant.

i12 - Create an unbound property handle

 The constructor creates an unbound property handle
according to the type passed in typenames and the
properties passsed to the function. An initial value can
be passed as string value to initialize the data area allo-
cated for the property handle.

 - 401 -

 PropertyHandle :: PropertyHandle (Dic-

tionary *dictptr, char *prop_names, char

*typenames, SDB_RLEV ref_level, uint16 size,

uint16 precision, uint16 dimension, char

*init_string)

dictptr Dictionary handle

 An opened dictionary handle is passed.

prop_names Property name

 The property name is passed as 0-terminated string. It
may contain a property path that consists of a sequence
of property names.

typenames Type name

 The type name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

ref_level Reference level

 The reference level describes the way and the level of
instance references.

size Size

 Size of the instance or property area.

precision Precision

 The precision defines the number of decimal positions
behind the decimal point for numerical valued. For date
and time values it defines the way of presenting the val-
ues in charachter presentations.

dimension Dimension

 The dimension describes the property dimension. this is
the maximum number of instances that can be stored for
the property. The function returns 0 (UNDEF) if there is
no limit (collection) or the dimension (cardinality) defined
for the property.

init_string Initial value

 The initial value for the property is passed as 0-
terminated string.

- 402 -

i13 - Create an unbound property handle with type name

 The constructor creates an unbound property handle
according to the type passed in typenames.

 PropertyHandle :: PropertyHandle (Dic-

tionary *dictptr, char *typenames)

dictptr Dictionary handle

 An opened dictionary handle is passed.

typenames Type name

 The type name is passed as 0-terminated string or as
buffer with trailing blanks and a maximum length of 40
characters.

i14 - Create an unbound property handle with database definition

 The constructor creates an unbound property handle
according to the dictionary SDB_Member definition
passed to the function (dbmptr).

 PropertyHandle :: PropertyHandle (Dic-

tionaryHandle &dict_handle, SDB_Member *dbmptr

)

dict_handle Dictionary handle

 The dictionary handle usually refers to an opened dic-
tionary. To check whether a dictionary is opened you
can use the !-operator.

dbmptr Member definition

i20 - Create an unbound property handle with structure definition

 The constructor creates an unbound property handle for
an unbound data instance (a data instance that is not
connected to the database). The property handle has no
connection to the database and does not support data-
base access functions.

The instance passed to the function (instance) is set as
instance area for the property handle, i.e. the handle
shares the data area with the application.

 PropertyHandle :: PropertyHandle

(DBStructDef *strdef, Instance instance_w)

strdef Structure definition

 - 403 -

 The structure definition is provided in the internal format
as pointer to a DBStructDef object.

instance_w Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a refer-
ence to a propertly structured area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

Default: Instance()

i21 - Create an unbound property handle

 The constructor creates an unbound property handle
according to the field definition (field_def) passed to the
constructor. An initial value can be passed according to
the type of the property handle to initialize the data area
allocated for the property handle.

 PropertyHandle :: PropertyHandle

(DBFieldDef *field_def, Instance initinst)

field_def Property definition

 The property defintion contains the metadata for the ref-
erenced property instance..

initinst Initializing instance

 Instance for initializing the instance area for the property
handle.

u1 - Create property handle for an integer value

 The constructor creates an unbound property handle for
an integer value (INT).

 PropertyHandle :: PropertyHandle (int32

int_val)

int_val Integer value

- 404 -

u2 - Create property handle for a string value

 The constructor creates an unbound property handle for
a string value (STRING). The area is allocated with the
size of the string passed to the constructor. The string is
copied into the instance area owned by the property
handle. To enable dynamical resize featur for the proper-
ty handle use the SetDynLength() function.

 PropertyHandle :: PropertyHandle (char

*string)

string String area

 Pointer to the 0-terminated string area.

u3 - Create property handle for a string value

 The constructor creates an unbound property handle for
a string value (STRING). The area is set to the string
pointer passed to the function.

 PropertyHandle :: PropertyHandle (char

*string, int32 string_len)

string String area

 Pointer to the 0-terminated string area.

string_len String length

 The string length defines the maximum number of char-
acters that can be stored in the string area without
counting the terminating 0. Usually this value is 1 less
that the allocated string area.

u4 - Create property handle for a double value

 The constructor creates an unbound property handle for
a double value (REAL).

 PropertyHandle :: PropertyHandle (double

dbl_value)

dbl_value Double value

u5 - Create property handle for a date value

 The constructor creates an unbound property handle for
a date value (DATE).

 - 405 -

 PropertyHandle :: PropertyHandle (dbdt

date_val)

date_val Date value

 The data value is passed in the internal data format.

u6 - Create property handle for a time value

 The constructor creates an unbound property handle for
a time value (TIME).

 PropertyHandle :: PropertyHandle (dbtm

time_val)

time_val Time value

 The time value is passed in the internal data format.

u7 - Create property handle for a date/time value

 The constructor creates an unbound property handle for
a date/time value (DATETIME).

 PropertyHandle :: PropertyHandle (dttm

datetime_val)

datetime_val Date-Time value

 A date-time value or time point is passed in the internal
date-time format.

u8 - Create property handle for a logical value

 The constructor creates an unbound property handle for
a logical value (LOGICAL).

 PropertyHandle :: PropertyHandle (logi-

cal logval)

logval Logical value

 Is a logical (bool) value.

x1 - Dummy constructor

 The function creates an empty property handle without
handle pointer.

- 406 -

 PropertyHandle :: PropertyHandle (

)ProvGenAttribute - Provide generic attrib-
utes for new instance

 When reading an instance containing generic attributes
the generic attributes according to the selected type are
provided in the instance only when already existing, i.e.
reading an instance will not create missing generic at-
tributes. To provide generic attributes in any case this
function can be called that creates missing generic at-
tributes for the read instance.

logical PropertyHandle :: ProvGenAttribute ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Provide - Provide instance

 The Provide() function allows selecting an instance in a
property handle collection by key or position that must
not necessarily exist in the collection. The provide func-
tion checks whether the instance exists in the collection
(Get()). If not existing the instance is created in the col-
lection (-> Add()) and selected.

i0 - Provide instance at position

 The function tries to provide an instance at a certain po-
sition. When no instance exist at the location passed in
set_pos_w, the function creates an instance by position
(-> Add(): "Create Instance at position").

Instance PropertyHandle :: Provide (int32 set_pos0_w)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

set_pos0_w Position in collection

 - 407 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

i03 - Provide instance by character key

 This function is supported because of compatibility rea-
sons and operates as the "Provide instance by key val-
ue" function.

Instance PropertyHandle :: Provide (char *charkey)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

charkey Key area

 The key area is structured according to the key definition
(key smcb).

- 408 -

i05 - Provide instance by property

 The function checks whether the property handle passes
a numerical value or not. When passing a numerical val-
ue the function provides an instance at the position ac-
cording to the number passed in the property handle (->
"Provide instance at position"). When the property han-
dle contains text data, the value in the property handle is
interpreted as string key, which will be converted into
key and provides an instance by key value (-> "Provide
instance by key value").

When the property handle refers to a complex instance
of the same type or a base type of the current type in the
property handle, the instance key in the passed property
handle is used for locating the key.

Instance PropertyHandle :: Provide (PropertyHandle &prop_hdl)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i1 - Provide intsance by key value

 The function tries to provide an instance with the passed
sort key (or ident-key for unordered collections). When
no instance exist with the key passed in sort_key, the
function creates an instance by key value (-> Add():
"Add Instance by key value").

Instance PropertyHandle :: Provide (Key sort_key)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

sort_key Sort key value

 - 409 -

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

i2 - Provide intsance by instance

 The function extracts the sort key (for ordered collec-
tions) or the ident-key (for unordered collections) and
tries to locate the instance in the collection with the ex-
tracted key value. When no such instance exists the
function adds an instance to the collection (-> Add():
"Add instance").

Instance PropertyHandle :: Provide (Instance initinst)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

initinst Initializing instance

 Instance for initializing the instance area for the property
handle.

ProvideArea - Provide instance area

 The function provides the instance area for a selected
property instance. When no instance is selected in the
upper property handle or when no instance is selected in
a collection handle the function returns an empty in-
stance.

Instance PropertyHandle :: ProvideArea () const

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

- 410 -

ProvideGUID - Provide Global Instance Identifier (GUID)

 Usually the GUID is generated when the insatnce is cre-
ated. It is, however, also possibbe to create GUIDs on
demand by not setting autogenerating GUIDs in the
structure or collection definition. This function allows ex-
plicitely generating a GUID as long as no GUID has
been generated for the instance. When the ID already
exists, the function returns the current GUID without
generating a new one.

For building a GUID for a structure instance the structure
must be derived from __OBJECT. Since ProvideGUID is
locking the __OBJECT extent it should not be used in
long transactions.

char *PropertyHandle :: ProvideGUID ()

Return value The global instance identifier is passed as 0-terminated
string with a maximum length of 40 characters.

ProvideGlobal - Provide instance outside the transaction

 The function works the same way as the Provide() func-
tion, except that global instances are created outside the
transaction when not yet existing. When not running in a
transactions the function works the same way as Add().

Creating global instances in a transaction prevents all
other users from creating global instances for the same
extent until the transaction is closed, since the index for
the global collection is locked until terminating the trans-
action. Especially when creating instances via local col-
lections that are based on global collections (extents)
uncomfortable locks may block the system. In this case
ProvideGlobal() should be used instead of Provide().

Using ProvideGlobal() for creating a new instance the
instance will resist in the global collection also when roll-
ing back the transaction.

i0

Instance PropertyHandle :: ProvideGlobal (int32 set_pos0_w)

 - 411 -

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

set_pos0_w Position in collection

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSTANCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSTANCE (0) refers to the last instance in a
collection according to the selected index (sort order).

i03

Instance PropertyHandle :: ProvideGlobal (char *charkey)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

charkey Key area

 The key area is structured according to the key definition
(key smcb).

- 412 -

i05

Instance PropertyHandle :: ProvideGlobal (PropertyHandle

&prop_hdl)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i1

Instance PropertyHandle :: ProvideGlobal (Key sort_key)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

sort_key Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

i2

Instance PropertyHandle :: ProvideGlobal (Instance initinst)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

initinst Initializing instance

 Instance for initializing the instance area for the property
handle.

 - 413 -

ProvideOperation - Provide operation handle

 To avoid reopening of an operation handle for the same
expression you can search for an operation handle by
using this function. The function returns the operation
handle for the given expression if it has been ceated
already. If not the function creates an operation handle.

OperationHandle *PropertyHandle :: ProvideOperation (char

*expression)

Return value

expression OQL expression

 An OQL expression defines a condition according to the
OQL syntax. OQL expressions must always terminate
with ';'. The OQL-Expression is passed as 0-terminated
string.

ReadBuffer - Fill instance buffer from position

 The function explicitly fills the buffer instances. the posi-
tion of the first instance to be read is passed in
set_pos0. The function removes all buffer instances lo-
cated in the buffer and refills the buffer. Passing CUR-
RENT_INSTANCE as next position (default) the buffer
reads instances beginning with the current position
which has been set by the last Get() or LocateKey()
function. When no instance is selected the buffer is filled
beginning with the first instance.

When reading the last instances in a collection the buffer
might not be filled completely. The number of instances
read into the buffer is returned from the function.

int16 PropertyHandle :: ReadBuffer (int32 set_pos0, int16 direc-

tion)

Return value

set_pos0 Position in collection

- 414 -

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSATNCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSATNCE (0) refers to the last instance in a
collection according to the selected index (sort order).

direction

Refresh - Refresh selected instance

 The function checks whether the parent of the property
handle is positioned. If not, the function trys to position
the parent hierarchy (PositionTop()).

If the parent handle is positioned and the property is an
active property the function generates a server event
(Refresh).

logical PropertyHandle :: Refresh ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

RegisterHandle - Register property handle

 The property handle is registered for being notified when
an event happens on the allocated resources (index or
instance). This is a precondition for receiving server
events.

 - 415 -

logical PropertyHandle :: RegisterHandle ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ReleaseBuffer - Release instance buffer

 The function will release the allocated buffer. All instanc-
es in teh buffer are released and buffer access functions
cannot be called anymore until allocating a buffer again.

logical PropertyHandle :: ReleaseBuffer ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

RemoveTerminator - Remove line terminator from large text
fields

 The function removes the terminator string (string) from
the end of the text field.

logical PropertyHandle :: RemoveTerminator (char *string)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

string String area

 Pointer to the 0-terminated string area.

Rename - Rename instance

 The rename function allows changig the sort key value
of the selected instance. After changig the key value the
instance is stored.

The effect is the same as changing the key attributes in
the instance, unless that no knowledge about the key
attributes is required.

The function returns an error (YES) when no instance is
selected or when

logical PropertyHandle :: Rename (Key new_key)

- 416 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

new_key New key for the instance

 The key passed for renaming the instance must be
structured according to the currently selected sort order.

RepairIndex - Repair Index

 The function repairs the index for the collection in the
property handle. When no key name is passed, the cur-
rently selected index will be repaired. Messages about
repair actions are written to the error log-file.

The function wil remove index entries pointing to invalid
indanced (deleted). It repairs also index tree information
in large indexes.

logical PropertyHandle :: RepairIndex (char *key_name_w, char

*attrstr_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

key_name_w Key name for conversion

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks. If no key name is passed (NULL) the sort key
according to the selected sort order is used instead,

attrstr_w Attribute type

 The attribute type is passed as 0-terminated string. It
must be one of the defined values in the enumerated
value set for the attribute types defined for the generic
attribute.

 - 417 -

ReplaceSysVariables - Replace system variable

 The function allows replacing system variable references
in a text field. When the property handle refers to a text
field that contains references to system variables (e.g.
"...%SYSVAR1%") those references are be replaced
by the text currently set for the referenced system varia-
ble (in an ini-file or by the application (-> SetSysVaria-
ble())).

When the function is called for persistent fields the up-
dated text causes a modification and will be stored into
the database. Hence, it might be better to create a copy
of the property and replacing the text in the copy.

logical PropertyHandle :: ReplaceSysVariables ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ReplaceText - Replace system variable value

 The function allows replacing text strings in a text field.
When the property handle refers to a text field defined
strings as passed in old_str can be replaced by the text
passen in new_str.

When the function is called for persistent fields the up-
dated text causes a modification and will be stored into
the database. Hence, it might be better to create a copy
of the property and replacing the text in the copy.

logical PropertyHandle :: ReplaceText (char *old_str, char

*new_str)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

old_str Old string value

new_str New string value

- 418 -

Reset - Reset instance

 The function resets the current selection in the property
handle, i.e. the selection is cancelled without storing the
last updates (->Cancel()). Since the function is cancel-
ling the selection all subordinated property handles will
cancel the selection as well.

Than the function will re-read the instance from the da-
tabase (->Get()). Subordinated property handles remain
in the unselect state.

logical PropertyHandle :: Reset ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ResetSelection - Reset selection condition for collection

 Whe a filter has been set for the property handle (->
SetSelection()) this function will reset the selection, i.e.
the filter is not active anymore for the property handle.
When no filter had been set for the property handle the
function has no effect.

logical PropertyHandle :: ResetSelection ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ResetTransientProperty - Reset transient property handle

 The function releases the associated property handle for
a transient property handle. The associated handle will
be released for the original transient property handle and
all its copies. If there are no more users registered for
the property handle the access node will be destroyed.

logical PropertyHandle :: ResetTransientProperty ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 419 -

ResetWProtect - Reset permanent write protection

 The function allows resetting the permanent write protec-
tion for an instance. The property handle must be
opened in update or write mode and the instance must
be selected.

logical PropertyHandle :: ResetWProtect ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

Save - Store instance

 The function stores all modification made on the select-
ed instance and updates made on instances in subordi-
nated property handles. Within a transaction the the
function will write the updates to the transaction buffer.
Modifications are stored to the database when the trans-
action is closed (Commit()).

The function is called automatically when changing the
selection for a property handle and modifications have
been made on the instance.

logical PropertyHandle :: Save (char savopt, logical switchopt)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

savopt Store option

 This option indicates that instances, that have been
modified meanwhile by another user, can be overwritten
(YES). When passing NO for this option the function re-
turns an error when the instance has been updated by
another user after reading it into the application.

switchopt Unselct option

 The option forces the function to unselect the selected
instance in the property handle after terminating the
function.

- 420 -

SearchText - Search string in property

 This function performs a string search for a text property.
If the property is not a text property (-> IsText()) the
function returns AUTO (-1).

int32 PropertyHandle :: SearchText (char *string, int32 curpos,

logical case_opt)

Return value

string String area

 Pointer to the 0-terminated string area.

curpos

case_opt Case sensitive

 The option indicates case sensitive data in text (YES)

Select - Create a subset from a collection

 The result collection contains the instances from the
passed collection that return true (YES) for the expres-
sion passed to the select function. The expression
passed must define a valid expression for the structure
of the passed collection.

The operation is performed with the passed operand
storing the result in the collection referenced by the call-
ing property handle. When the calling property handle
refers to a non empty collection all instances are re-
moved before performing the operation. When the call-
ing property handle is empty the function creates a tem-
porary extend for storing the result.

PropertyHandle &PropertyHandle :: Select (PropertyHandle

&prophdl_ref, char *expression)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

expression OQL expression

 An OQL expression defines a condition according to the
OQL syntax. OQL expressions must always terminate
with ';'. The OQL-Expression is passed as 0-terminated
string.

 - 421 -

SetActionResult - Set result string

 The function allows setting a result string for the property
handle. The result string can be retrieved with the Get-
ActionResult function. Thus you can pass the result of
any action also to a client application while the action is
running on the server. The result is passed as string, i.e.
the result must not contain any 0-characters except the
terminating 0.

void PropertyHandle :: SetActionResult (char *result_string)

result_string Result string

 The result string can be a list of strings where strings are
usually separated by x01 characters. If there is only one
string returned the string is 0-terminated. Multiple strings
are terminated with 0 after the last string in the list, which
should be terminated with x01 as well.

SetArea - Set area pointer for property instance

 The function can be used for property handles referring
to internal data (transient fields) to allocate an instance
area. The data area is not owned by the property handle
in this case and will not automatically freed when closing
the property handle.

Do not use this functions for subordinated property han-
dles that refer to properties in instances. This will dis-
connect the property handle from its instance data.

Instance PropertyHandle :: SetArea (void *datarea)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

datarea

- 422 -

SetDescription - Set definition for property

 The function can be used for property handles referring
to internal data (transient fields) to allocate a description
(DBFieldDef). The description is not owned by the prop-
erty handle in this case and will not automatically freed
when closing the property handle.

Do not use this functions for subordinated property han-
dles that refer to properties in instances.

i0

void PropertyHandle :: SetDescription (DBFieldDef *prop_def)

prop_def Property definition

 The property defintion contains the metadata for the ref-
erenced property instance.

i01

void PropertyHandle :: SetDescription (fmcb *fmcbptr)

fmcbptr

SetDynLength - Activate dynamic length handling

 The function activates dynamical size correction for the
data area of the property handle. When assigning a val-
ue that is larger then the data area the data area will
increase automatically instead of cutting the value.

logical PropertyHandle :: SetDynLength ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 423 -

SetGenAttribute - Set type for generic attribute in instance

 The function sets the type for a generic attribute. The
attribute type (as e.g. language) can be passed as string
(attrstr) or type number (attrtype).

When the property handle does not refer directly to a
generic attribute the property path for the generic attrib-
ute in the instance must be passed to the function
(propnames).

i0

logical PropertyHandle :: SetGenAttribute (char *attrstr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

attrstr Attribute type

 The attribute type is passed as 0-terminated string. It
must be one of the defined values in the enumerated
value set for the attribute types defined for the generic
attribute. When the index is not generic, no attribute
needs to be passes. If no attribute is pased for a generic
index the current setting is used.

i1

logical PropertyHandle :: SetGenAttribute (int attrtype)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

attrtype Type of generic attribute

 The type for a generic attribute is a valid value from the
basic enumeration of the generic attribute. UNDEF (0)
indicates an undefined generic type.

i2

logical PropertyHandle :: SetGenAttribute (char *attrstr, char

*prop_path)

- 424 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

attrstr Attribute type

 The attribute type is passed as 0-terminated string. It
must be one of the defined values in the enumerated
value set for the attribute types defined for the generic
attribute. When the index is not generic, no attribute
needs to be passes. If no attribute is pased for a generic
index the current setting is used.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

i3

logical PropertyHandle :: SetGenAttribute (int attrtype, char

*prop_path)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

attrtype Type of generic attribute

 The type for a generic attribute is a valid value from the
basic enumeration of the generic attribute. UNDEF (0)
indicates an undefined generic type.

prop_path Property path

 The property path is passed as 0-terminated string. It
may contain a single property name or a sequence of
property names separated by '.'.

SetInstance - Set basic instance for property

 The function locates the area for the property handle in
an instance. When defining internal structured instances
this allows locating the property instance within a struc-
ture instance. This function should not be called for
property handles in database instances since it may dis-
connect the property handle from the database instance.

 - 425 -

Instance PropertyHandle :: SetInstance (char *instance)

Return value Persistent instances do have the type of the referenced
collection handle (collection type). Persistent instances
may contain references to other instances or collections.
Referenced instanced can be accessed by collection
handles that are part of the persistent instance. The col-
lection handles for referenced instances can be ac-
cessed by the property name that has been defined in
the structure definition.

When accessing the collection as MEMO-collection
(PI(mem)) no specific instance type is provided. In this
case collection handle for references can be provided
via the {.r GetPIPointer()} function.

instance Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

SetInstanceAction - Register action in the instance context

 The function adds an action to the instance context of
the property handle. The instance action, which is not
defined in the data model, is available in the instance
context for the current property handle, only, but not for
all instance contexts of this type.

logical PropertyHandle :: SetInstanceAction (SimpleAction

*action)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

action Simple Action

 The simple action defines the context action and the ac-
tion type. Some action types require more detailled ac-
tion definitions that will be retrieved in the dictionary. In
this case the dictionary must contain an appropriate ac-
tion definition.

- 426 -

SetInstanceEventHandler - Set Instance Event Handler

 Instance event handlers can be used as an alternative
way to handle server notifications independent on im-
plemented context classes. To be notified from the serv-
er the property handle must be registered on the server
(RegisterPropertyHandle().

When setting event handlers in addition to a context
class handler function, the context class handler is exe-
cuted prior to the application handlers. When the context
class handler returns an error (YES), the application
handlers are not executed. Execution of application han-
dlers is also stopped, when the first application handler
returns an eror (YES).

The event handler is passed as an event link that con-
sists of an event handler function and a class instance.
The handler is called later with the instance of the event
handler class set in the event link.

When adding several instance event handlers, they are
called in the sequence as being added to the property
handle. Handlers can be removed using the Re-
setInstanceEventHandler() function.

void PropertyHandle :: SetInstanceEventHandler (EventLink

*event_link)

event_link Event link

 An event link defines the link between a property handle
and an event handler. A simple way of defining an event
link is provided with the ELINK macro:

 ELINK(class_instance, class_name, function_name)

 - 427 -

SetInstanceProcessHandler - Activate Instance process event
handler

 Instance process event handler can be used as an alter-
native way to handle instance database events within an
instance (structure) context class. In contrast to data-
base event handler functions in context classes, event
handler can be installed in any application without defin-
ing specific context classes. This allows handling differ-
ent instances with the one event handler.

When setting event handlers in addition to a context
class handler function the context class handler is exe-
cuted prior to the application handlers. When the context
class handler returns an error (YES), the application
handlers are not executed. Execution of application han-
dlers is also stopped, when the first application handler
returns an eror (YES).

The event handler is passed as an event link that con-
sists of an event handler function and a class instance.
The handler is called later with the instance of the event
handler class set in the event link.

When adding several instance process event handlers,
they are called in the sequence as being added to the
property handle. Handlers can be removed using the
ResetInstanceProcessHandler() function.

void PropertyHandle :: SetInstanceProcessHandler (EventLink

*event_link)

event_link Event link

 An event link defines the link between a property handle
and an event handler. A simple way of defining an event
link is provided with the ELINK macro:

 ELINK(class_instance, class_name, function_name)

SetKey - Move ident key value to instance

 The passed key value is stored to the component attrib-
utes of the identifying key in the instance. When passing
an empty instance the key is stored in the selected in-
stance of the property handle. When no insztance is
passed or selected or when no identifying key is defined
for the structure the function returns an error (YES).

logical PropertyHandle :: SetKey (Key ident_key, Instance in-

stance_w)

- 428 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ident_key Ident key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey() function.

instance_w Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a refer-
ence to a propertly structured area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

Default: Instance()

SetNormalized - Set normalized value in attribute

 The function can be used for storing integer values with
decimal precisions in INT or unsigned INT attributes.
When defining a an attribute with two decimals, assign-
ing 1 will result inernally into 100 (1.00). Assigning the
value using SetNormalized will result in 1 (0.01).

logical PropertyHandle :: SetNormalized (int32 long_val)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

 - 429 -

SetOrder - Set sort order

 When there are different sort orders (indexes) supported
for a collection one of those can be selected as current
sort order. The sort order or index is selected by the key
name that is associated with the index. Changing the
sort order will reset the selection in the property handle
and no instance is selected when the function returns.

When selecting a generic attribute index the attribute
type (as e.g. language) can be passed to select the
proper index. If no attribute type is passed it is evaluat-
ed from the generic attribute.

When not passing a sort key name the default index is
set as current sort order. The default index is the identi-
fying key index (when defined for the collection) or the
first unique index in the list of available indexes. Passing
"*" for the sort key name refreshs the sort order. This
way it is possible to set the proper index for a generic
attribut index or to reorganize a tamporary index.

When no index is defined for the passed key name or
the attribute type is not defined the function returns an
error (YES).

i00

logical PropertyHandle :: SetOrder (char *key_name_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

key_name_w Key name for conversion

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks. If no key name is passed (NULL) the sort key
according to the selected sort order is used instead,

i01

logical PropertyHandle :: SetOrder (char *key_name, int attrtype

)

- 430 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

key_name Key name

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks.

attrtype Type of generic attribute

 The type for a generic attribute is a valid value from the
basic enumeration of the generic attribute. UNDEF (0)
indicates an undefined generic type.

i02

logical PropertyHandle :: SetOrder (char *key_name, char

*attrstr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

key_name Key name

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks.

attrstr Attribute type

 The attribute type is passed as 0-terminated string. It
must be one of the defined values in the enumerated
value set for the attribute types defined for the generic
attribute. When the index is not generic, no attribute
needs to be passes. If no attribute is pased for a generic
index the current setting is used.

i03

logical PropertyHandle :: SetOrder (char *key_name, int at-

trtype, char *attrstr)

 - 431 -

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

key_name Key name

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks.

attrtype Type of generic attribute

 The type for a generic attribute is a valid value from the
basic enumeration of the generic attribute. UNDEF (0)
indicates an undefined generic type.

attrstr Attribute type

 The attribute type is passed as 0-terminated string. It
must be one of the defined values in the enumerated
value set for the attribute types defined for the generic
attribute. When the index is not generic, no attribute
needs to be passes. If no attribute is pased for a generic
index the current setting is used.

SetPropertyAction - Register action in the property contect

 The function adds an action to the property context of
the property handle. The property action, which is not
defined in the data model, is available in the instance
context for the current property handle, only, but not for
all instance contexts of this type.

logical PropertyHandle :: SetPropertyAction (SimpleAction

*action)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

action Simple Action

 The simple action defines the context action and the ac-
tion type. Some action types require more detailled ac-
tion definitions that will be retrieved in the dictionary. In
this case the dictionary must contain an appropriate ac-
tion definition.

- 432 -

SetPropertyEventHandler - Set Property Event Handler

 Property event handlers can be used as an alternative
way to handle server notifications independent on im-
plemented context classes. To be notified from the serv-
er the property handle must be registered on the server
(RegisterPropertyHandle()).

When setting event handlers in addition to a context
class handler function, the context class handler is exe-
cuted prior to the application handlers. When the context
class handler returns an error (YES), the application
handlers are not executed. Execution of application han-
dlers is also stopped, when the first application handler
returns an eror (YES).

The event handler is passed as an event link that con-
sists of an event handler function and a class instance.
The handler is called later with the instance of the event
handler class set in the event link.

When adding several property event handlers, they are
called in the sequence as being added to the property
handle. Handlers can be removed using the ResetProp-
ertyEventHandler() function.

void PropertyHandle :: SetPropertyEventHandler (EventLink

*event_link)

event_link Event link

 An event link defines the link between a property handle
and an event handler. A simple way of defining an event
link is provided with the ELINK macro:

 ELINK(class_instance, class_name, function_name)

 - 433 -

SetSelection - Set filter condition for collection handle

 The function allows applying a filter expression to the
collection. The expression must be a valid expression in
the context of the structure defined for the property han-
dle. When a filter is set the property handle selects only
those instances that return true (-> IsTrue()) for the ex-
pression. Sequential retievals as NextKey(), operators
++ and -- or Position() automatically search for the next
valid instance. The Get() function that is requesting a
specific instance by index or key returns an empty in-
stance when the requested instance does not fulfill the
filter condition.

When setting a filter for an update or write property han-
dle updating an instance may lead to an invalid instance.
In this case the instance is unselected after storing the
updated data.

i0

logical PropertyHandle :: SetSelection (char *expression)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

expression OQL expression

 An OQL expression defines a condition according to the
OQL syntax. OQL expressions must always terminate
with ';'. The OQL-Expression is passed as 0-terminated
string.

i02

logical PropertyHandle :: SetSelection (BNFData *bdata)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 434 -

SetSortKey - Store sort key value to instance

 The passed key value is stored to the component attrib-
utes of the selected sort key in the instance. When pass-
ing an empty instance the key is stored in the selected
instance of the property handle. When no instance is
passed or selected or when no sort key is defined for the
structure the function returns an error (YES).

logical PropertyHandle :: SetSortKey (Key sort_key, Instance in-

stance_w)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

sort_key Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

instance_w Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a refer-
ence to a propertly structured area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

Default: Instance()

 - 435 -

SetTransientProperty - Setting property handle for transient
property (reference)

 This function sets the current handle for a transient
property handle. The function will not create a copy of
the property handle. The associated handle is regis-
tered, only.

When a copy of the referenced property handle is re-
quired the application has to create the copy befor set-
ting it. After associating the copy for the referenced
property handle it can be destroyed. Because it is regis-
tered in the transient property handle it will be destroyed
when resetting the transient reference or when setting
another property handle for the same transient refer-
ence.

When creating a copy of a transient reference the copy
will get the same referenced handle. All referened prop-
erty handles for the original transient property handle
and all its copies will be updated when setting a new
property handle for the original transient property handle
or one of its copies.

Transient property handles are destroyed automatically
when they are placed in a persistent object instance and
this instance is destroyed. When, however, referring re-
cursively to a property handle by associating a parent or
higher property handle with a subordinated property
handle this may result in never deleting the access node.
Use MarkUsed() and MarkUnused() for handeling this
situation.

You can release the associated property handle using
the ResetTransientProperty() function.

logical PropertyHandle :: SetTransientProperty (PropertyHandle

&prop_hdl)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

- 436 -

SetType - Set type for weak-typed collection

 Before creating a new instance for a weak-typed collec-
tion the type of the instance to be inserted has to be set
in the property handle. The type of instance to be creat-
ed is passe as structure name (strnames). This setting
might be reset when reading the next instance in the
collection.

logical PropertyHandle :: SetType (char *strnames)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

strnames Structure name

 The structure name is passed as 0-terminated string or
as buffer with a maximum size of 40 characters and trail-
ing blanks.

SetVersion - Set instance version to be provided by the collec-
tion handle

 The function allows changing the version for a property
handle. This allows providing older instance versions
that are stored for the instance selected.

Passing CUR_VERSION will reset the version to the
current version for the property handle.

logical PropertyHandle :: SetVersion (uint16 version_nr)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

version_nr Internal version number

 Version numbers are created internally for each Active
Object when creating a new version for the Database
Object. Each version number is associated with a time
stamp that defines the end of this version.

Default: CUR_VERSION

 - 437 -

SetWProtect - Set permanent write protection

 The function sets permanent write protection for the se-
lected instance. After being permanently write protected
the instance cannot be updated until the write protection
is reset (-> ResetWProtect()). The property handle must
be opened in update or write mode and the selected in-
stance must be writeable (-> IsWrite()).

logical PropertyHandle :: SetWProtect ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

StoreData - Store instance data to property handle

 The passed instance is stored to the structure attributes
of the selected instance. When no instance is selected
or located or when the instance is not writeable the func-
tion returns an error (YES).

logical PropertyHandle :: StoreData (char *instance)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

instance Instance area

 Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

StringToKey - Convert string to internal key

 The passed key will be converted from an extended SDF
string into the internal key instance format. As field sepa-
rator in the string key '|' is assumed. Structure levels are
enclosed in '{}'. Normally the key passed is assumed to
be structured according to the sort key selected for the
property handle ot according to the identifying key (when
no sort key is defined). It is, however, also possible to
pass a valid key name for conversion.

- 438 -

Key PropertyHandle :: StringToKey (Key key_string, char

*key_name_w)

Return value The key value structure corresponds to the structure of
the passed or selected key.

key_string String area for key

 The key is provided as ESDF key. {} are used as in-
stance parenthesis, | is used as property delimiter. De-
limiters may change when defined differently in the Da-
taFormat option.

key_name_w Key name for conversion

 The key name is passed as 0-terminated string or as
buffer with a maximum size of 40 characters and trailing
blanks. If no key name is passed (NULL) the sort key
according to the selected sort order is used instead,

ToTop - Position to top of collection (before first)

 The function positions the property handle before the
first instance in the collection according to the defined
sort order. Thus, a subsequent ++ operation or Next-
Key() will select the first instance in the collection. No
instance is selected after calling this function.

When an instance is selected in the property handle it
will be unselected (and stored when it was modified).

For Access pathes the function can be used to initialize
the asscess path. After opening an access path the path
has not been executed and is uninitialized until the next
Get() call. ToTop() will inilialize the path in advance.

logical PropertyHandle :: ToTop ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 439 -

Union - Union two collections

 The result collection contains the instancesfrom all oper-
and collections. When passing no for the distict option
the result contains also duplicates. Otherwise duplicates
are not stored in the result collection. Duplicates are de-
termined by means of sort key (passing YES for ik_opt)
or local identities (LOID). Using the LOID is save but
comparing the key is much faster. Hence, the key check
should be used whenever possible.

i0 - Binary union

 This implementation builds the union from the two collec-
tions passed to the operation. The result is stored in the
collection referenced by the calling property handle.
When the calling property handle refers to a non empty
collection all instances are removed before performing
the operation. When the calling property handle is empty
the function creates a temporary extend for storing the
result.

PropertyHandle &PropertyHandle :: Union (PropertyHandle

&prop_hdl1, PropertyHandle &prop_hdl2, char

sk_opt, logical distinct)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prop_hdl1 First Property handle

 Reference to an opened property handle.

prop_hdl2 Second Property handle

 Reference to an opened property handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

distinct Distinct option

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

- 440 -

i01 - Union list of collections

 This implementation builds the union from all collections
passed to the operation. The result is stored in the col-
lection referenced by the calling property handle. When
the calling property handle refers to a non empty collec-
tion all instances are removed before performing the
operation. When the calling property handle is empty the
function creates a temporary extend for storing the re-
sult.

PropertyHandle &PropertyHandle :: Union (PropertyHandle

**ph_list, int16 count, char sk_opt, logical

distinct)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

ph_list List of property handles

 An array of property handles acting as operands in the
operation. The number of property handles in the array
is passed in the count-parameter.

count Number of entries

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

distinct Distinct option

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

i02 - Union inplace

 Calling the function with one property handle creates the
union collection is built from the calling and the passed
collection and the result is stored in the calling collection.
This will change the collection for the calliung proiperty
handle.

PropertyHandle &PropertyHandle :: Union (PropertyHandle

&prophdl_ref, char sk_opt, logical distinct)

 - 441 -

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

sk_opt Sort key option

 The sortkey option indicates whether the operation
should be performed according to the sort key set for the
collections (YES. Otherwise (NO) the operation is per-
formed by comparing instances.

Default: YES

distinct Distinct option

 Passing a distinct option YES forces the function to re-
move duplicates from the result collection.

Unlock - Unlock instance

 This function allows unlocking the selected instance of
the property handle after it has been locked (-> Lock()).
Instances for shared base structures are not automati-
cally included in the unlocking and must be unlocked
separately when being locked separately.

The function returns NO when the instance has been
unlocked successfully. It returns en error (YES) when
the instance is not locked, when no instance is selected
in the property handle or when another error occurred.

logical PropertyHandle :: Unlock ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

- 442 -

UnlockSet - Unlock collection

 This function allows unlocking a collection handle refer-
enced in a collection property handle that has been
locked (-> Lock()) within the application.

The function returns NO when the collection has been
unlocked successfully. It returns en error (YES) when
the collection has not been locked, when no instance is
selected in the upper property handle (when existing) or
when another error occurred.

logical PropertyHandle :: UnlockSet ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

UnregisterHandle - Unregister property handle

 The property handle is unregistered for being notified
when an event happens on the allocated resources (in-
dex or instance).

logical PropertyHandle :: UnregisterHandle ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

ValidateNode - Checks whetehr the Namdle is valid

 Usually a property handle is valid when it has been
opened successfully. When one of the upper handles,
however, is weak typed or untyped the handle may be-
come invalid when changing the selection in the upper
node.

logical PropertyHandle :: ValidateNode () const

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

 - 443 -

operator! - Negation operator for logical values

 The negation operation performed depends on the type
of the first operand. If the second operand is not compat-
ible with the first operand the function tries to convert the
second operand into the type of the first operand. If no
conversion is possible the operation fails.

1. Numerical data

The operator substract the second operand from the first
one.

2. Text data

The operator removes all occurences of operand 2 in
operand 1, i.e. "Paul Miller" - "aul" = "P Miller".

3. Collections

The Minus operation is performed as oper-
and1.Minus(operand2)

4. Time fields

For date and time you may substract integer or time val-
ues. values, only. Substracting an integer results in a
new time value of the same type (operand1). Substract-
ing a time value results in an integer containing the dis-
tance between the time values.

5. Logical

The substract operation returns the result of an exclusive
or operation

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

logical PropertyHandle :: operator! ()

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

operator!= - Compare two property instances (not equal)

 The operation compares the two operands and returns
false (NO) when they are identical and true (YES) oth-
erwise.

- 444 -

i0 - Compare with other property handle

 This operator compares the value in the property handle
with the value in the passed property handle. Data con-
version is performed when required.

logical PropertyHandle :: operator!= (const PropertyHandle

&cprop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01 - Compare with string value

 This operator compares the value in the property handle
with the value in the passed string. Data conversion is
performed for the string when required.

logical PropertyHandle :: operator!= (char *string)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

i02 - Compare with 32-bit integer value

 This operator compares the value in the property handle
with the passed integer value. Data conversion is per-
formed for the passed value when required.

logical PropertyHandle :: operator!= (int32 long_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

 - 445 -

i03 - Compare with double value

 This operator compares the value in the property handle
with the passed double float value. Data conversion is
performed for the passed value when required.

logical PropertyHandle :: operator!= (double double_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

double_val

i04 - Compare with date value

 This operator compares the value in the property handle
with the passed date value. Data conversion is per-
formed for the passed value when required. Converting
date values to string values may result in different string
values for the same date value depending on the nation-
al setting. Hence, string values should not be compared
with date values. In this case it is more appropriate to
compare the date values directly (ph.GetDate() !=
date_val).

logical PropertyHandle :: operator!= (dbdt date_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

date_val Date value

 The data value is passed in the internal data format.

i05 - Compare with time value

 This operator compares the value in the property handle
with the passed time value. Data conversion is per-
formed for the passed value when required. Converting
time values to string values may result in different string
values for the same time value depending on the nation-
al setting. Hence, string values should not be compared
with time values. In this case it is more appropriate to
compare the time values directly (ph.GetTime() !=
time_val).

logical PropertyHandle :: operator!= (dbtm time_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

- 446 -

time_val Time value

 The time value is passed in the internal data format.

i06 - Compare property handles

 This operator compares the property handles, i.e. the
cursor objects referenced by the property handle. Prop-
erty handles are considered as equal, when they refer to
the same cursor.

logical PropertyHandle :: operator!= (PropertyHandle

*property_handle)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

property_handle Pointer to a property handle

 Is a pointer to an (usually) opened property handle.

operator% - Remaining part for integer division

 The modulo operation is supported for numerical data,
only. If the second operand is not compatible with the
first operand the function tries to convert the second op-
erand into the type of the first operand. If no conversion
is possible the operation fails. The operator provides the
remaining part of a division of the first operator by the
second one.

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

PropertyHandle PropertyHandle :: operator% (PropertyHandle

&prop_hdl)

Return value

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

 - 447 -

operator& - AND operator (or intersect)

 The intersect operation is supported for collections, only.
It can be used instead of the Intersect function (Inter-
sect(operand1,operand2)).

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

PropertyHandle PropertyHandle :: operator& (PropertyHandle

&prophdl_ref)

Return value

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

operator&& - Logical AND operation

 The operator returns true (YES) if both operands are
true and NO otherwise.

(-> IsTrue())

logical PropertyHandle :: operator&& (const PropertyHandle

&cprop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

operator&= - AND operator (intersect collections)

 The operator returns the result of an intersec operation
in the first operand.

(-> operator&)

PropertyHandle &PropertyHandle :: operator&= (PropertyHandle

&prophdl_ref)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

- 448 -

operator() - Locate instance

 The operator can be used to locate an instance instead
of the Get() function.

(-> Get())

i0

Instance PropertyHandle :: operator() (int32 set_pos0)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

set_pos0 Position in collection

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSATNCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSATNCE (0) refers to the last instance in a
collection according to the selected index (sort order).

i02

Instance PropertyHandle :: operator() (PropertyHandle &prop_hdl

)

 - 449 -

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i1

Instance PropertyHandle :: operator() (Key sort_key)

Return value Instances do have the type of the referenced property
handle (collection type). The instance contains a pointer
to a properly structured instance area.

You can use the !-operator or the GetData() function to
check whether the instance refers to data or not.

sort_key Sort key value

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the StringToKey}() function.
When no key is passed by the application an empty key
(without data area) will be passed.

operator* - Multiply two properties

 The multiplication operation is supported for some types,
only. The way the operation is performed depends on
the type of the first operand. If the second operand is not
compatible with the first operand the function tries to
convert the second operand into the type of the first op-
erand. If no conversion is possible the operation fails.

1. Numerical data

The operator multiplies the second operand with the first
one.

5. Logical

The multiplication returns the result of an and operation

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

- 450 -

PropertyHandle PropertyHandle :: operator* (const PropertyHandle

&cprop_hdl)

Return value

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

operator*= - Multiply and assign result to first operator

 The operator returns the result of a multiplication in the
first operand.

(-> operator*)

PropertyHandle &PropertyHandle :: operator*= (const PropertyHan-

dle &cprop_hdl)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

 - 451 -

operator+ - Sum two properties

 The sum operation performed depends on the type of
the first operand. If the second operand is not compati-
ble with the first operand the function tries to convert the
second operand into the type of the first operand. If no
conversion is possible the operation fails.

1. Numerical data

The operator adds the second operand to the first one.

2. Text data

The operator concatenates the second operand to the
first operand 1, i.e. "Paul " + "Miller" = "Paul Miller".

3. Collections

The Union operation is performed as oper-
and1.Union(operand2)

4. Time fields

For date and time you may add only integer.

5. Logical

The substract operation returns the result of an or opera-
tion

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

PropertyHandle PropertyHandle :: operator+ (const PropertyHandle

&cprop_hdl)

Return value

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

- 452 -

operator++ - Position cursor on next instance

 The increment operation performed depends on the type
of the operand.

1. Numerical data

The operator increments the value by 1.

2. Collections

The operation tries to locate the next instance in the col-
lection. If no iinstance is selected it locates the first in-
stance n the collection.

The result is returned in the operand.

i0

PropertyHandle &PropertyHandle :: operator++ (int)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

i01

PropertyHandle &PropertyHandle :: operator++ ()

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

operator+= - Sum and assign result to first operator

 The operator returns the sum of the two operands in the
first operand.

(-> operator+)

PropertyHandle &PropertyHandle :: operator+= (const PropertyHan-

dle &cprop_hdl)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

 - 453 -

operator- - Subtract properties

 The substract operation performed depends on the type
of the first operand. If the second operand is not compat-
ible with the first operand the function tries to convert the
second operand into the type of the first operand. If no
conversion is possible the operation fails.

1. Numerical data

The operator substract the second operand from the first
one.

2. Text data

The operator removes all occurences of operand 2 in
operand 1, i.e. "Paul Miller" - "aul" = "P Miller".

3. Collections

The Minus operation is performed as oper-
and1.Minus(operand2)

4. Time fields

For date and time you may substract integer or time val-
ues. values, only. Substracting an integer results in a
new time value of the same type (operand1). Substract-
ing a time value results in an integer containing the dis-
tance between the time balues.

5. Logical

The substract operation returns the result of an exclusive
or operation

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

i0

PropertyHandle PropertyHandle :: operator- (const PropertyHandle

&cprop_hdl)

Return value

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

- 454 -

i1

PropertyHandle PropertyHandle :: operator- ()

Return value

operator-- - Position cursor on previous instance

 The decrement operation performed depends on the
type of the operand.

1. Numerical data

The operator decrements the value by 1.

2. Collections

The operation tries to locate the prevoius instance in the
collection. If no iinstance is selected it locates the last
instance n the collection.

The result is returned in the operand.

i0

PropertyHandle &PropertyHandle :: operator-- ()

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

i01

PropertyHandle &PropertyHandle :: operator-- (int)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

operator-= - Subtract and assign result to first operator

 The operator returns the difference of the first and the
second operator in the first operand.

(-> operator-)

PropertyHandle &PropertyHandle :: operator-= (const PropertyHan-

dle &cprop_hdl)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

cprop_hdl Property Handle

 - 455 -

 Is a reference to an (usually) opened property handle.

operator/ - Devide proprties

 The division operation is supported for numerical data,
only. If the second operand is not compatible with the
first operand the function tries to convert the second op-
erand into the type of the first operand. If no conversion
is possible the operation fails. The operator devides the
first operand by the second one.

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

PropertyHandle PropertyHandle :: operator/ (const PropertyHandle

&cprop_hdl)

Return value

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

operator/= - Divide and assign result to first operator

 The operator returns the result of a division in the first
operand.

(-> operator/)

PropertyHandle &PropertyHandle :: operator/= (const PropertyHan-

dle &cprop_hdl)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

operator< - Compare two property instances (less)

 The operation compares the two operands and returns
true (YES) when the first operand is smaller than the
second operand and false (NO) otherwise.

- 456 -

i0 - Compare with other property handle

 This operator compares the value in the property handle
with the value in the passed property handle. Data con-
version is performed when required.

logical PropertyHandle :: operator< (PropertyHandle &prop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01 - Compare with string value

 This operator compares the value in the property handle
with the value in the passed string. Data conversion is
performed for the string when required.

logical PropertyHandle :: operator< (char *string)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

i02 - Compare with 32-bit integer value

 This operator compares the value in the property handle
with the passed integer value. Data conversion is per-
formed for the passed value when required.

logical PropertyHandle :: operator< (int32 long_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

i03 - Compare with double value

 This operator compares the value in the property handle
with the passed double float value. Data conversion is
performed for the passed value when required.

 - 457 -

logical PropertyHandle :: operator< (double double_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

double_val

i04 - Compare with date value

 This operator compares the value in the property handle
with the passed date value. Data conversion is per-
formed for the passed value when required. Converting
date values to string values may result in different string
values for the same date value depending on the nation-
al setting. Hence, string values should not be compared
with date values. In this case it is more appropriate to
compare the date values directly (ph.GetDate() <
date_val)

logical PropertyHandle :: operator< (dbdt date_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

date_val Date value

 The data value is passed in the internal data format.

i05 - Compare with time value

 This operator compares the value in the property handle
with the passed time value. Data conversion is per-
formed for the passed value when required. Converting
time values to string values may result in different string
values for the same time value depending on the nation-
al setting. Hence, string values should not be compared
with time values. In this case it is more appropriate to
compare the time values directly (ph.GetTime() <
time_val).

logical PropertyHandle :: operator< (dbtm time_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

time_val Time value

 The time value is passed in the internal data format.

- 458 -

operator<= - Compare two property instances (less or equal)

 The operation compares the two operands and returns
true (YES) when the first operand is smaller than or
equal to the second operand and false (NO) otherwise.

i0 - Compare with other property handle

 This operator compares the value in the property handle
with the value in the passed property handle. Data con-
version is performed when required.

logical PropertyHandle :: operator<= (PropertyHandle &prop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01 - Compare with string value

 This operator compares the value in the property handle
with the value in the passed string. Data conversion is
performed for the string when required.

logical PropertyHandle :: operator<= (char *string)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

i02 - Compare with 32-bit integer value

 This operator compares the value in the property handle
with the passed integer value. Data conversion is per-
formed for the passed value when required.

logical PropertyHandle :: operator<= (int32 long_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

 - 459 -

i03 - Compare with time value

 This operator compares the value in the property handle
with the passed time value. Data conversion is per-
formed for the passed value when required. Converting
time values to string values may result in different string
values for the same time value depending on the nation-
al setting. Hence, string values should not be compared
with time values. In this case it is more appropriate to
compare the time values directly (ph.GetTime() <=
time_val).

logical PropertyHandle :: operator<= (dbtm time_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

time_val Time value

 The time value is passed in the internal data format.

i04 - Compare with date value

 This operator compares the value in the property handle
with the passed date value. Data conversion is per-
formed for the passed value when required. Converting
date values to string values may result in different string
values for the same date value depending on the nation-
al setting. Hence, string values should not be compared
with date values. In this case it is more appropriate to
compare the date values directly (ph.GetDate() <=
date_val).

logical PropertyHandle :: operator<= (dbdt date_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

date_val Date value

 The data value is passed in the internal data format.

i05 - Compare with double value

 This operator compares the value in the property handle
with the passed double float value. Data conversion is
performed for the passed value when required.

logical PropertyHandle :: operator<= (double double_val)

- 460 -

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

double_val

operator= - Assign property instances

 The assignment operator allows assigning values of
property handles to each other. The way the operation is
performed depends mainly on the first operand:

1. First operand is (not opened)

The function copies the handle pointer from the second
operand to the first operand.

(-> CopyHandle(property_handle))

2. Collection

When both, the first and the second operator, are collec-
tions, the instances in the first collection are deleted and
the instances from the second collection are copied to
the first collection.

3. Instance or value

if the first operand refers to an instance or value the
function converts the instance or value from the second
operand into the instance of the first operand. If the se-
cond operand is a collection the selected instance in this
collection is copied. If no instance is selected in the se-
cond operand the function tries to select an instance in
the second operand for performing the operation. Copy-
ing instances is done by assigning all properties with the
same name. Copying values will perform automatic data
conversion when necessary.

The operand allows also assigning values to a property
handle. In this case (second operand is a value and not
a property handle) the first operand must refer to a value
or instance. The value is converted when necessary.

i0

PropertyHandle &PropertyHandle :: operator= (const PropertyHan-

dle &cprop_hdl)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

 - 461 -

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i1

PropertyHandle &PropertyHandle :: operator= (int32 long_val)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

i2

PropertyHandle &PropertyHandle :: operator= (double dbl_value)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

dbl_value Double value

i3

PropertyHandle &PropertyHandle :: operator= (dbdt date_val)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

date_val Date value

 The data value is passed in the internal data format.

i4

PropertyHandle &PropertyHandle :: operator= (dbtm time_val)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

time_val Time value

 The time value is passed in the internal data format.

i5

PropertyHandle &PropertyHandle :: operator= (int16 short_val)

- 462 -

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

short_val

i6

PropertyHandle &PropertyHandle :: operator= (char *string)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

string String area

 Pointer to the 0-terminated string area.

i7

PropertyHandle &PropertyHandle :: operator= (logical logval)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

logval Logical value

 Is a logical (bool) value.

i8

PropertyHandle &PropertyHandle :: operator= (dttm datetime_val)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

datetime_val Date-Time value

 A date-time value or time point is passed in the internal
date-time format.

operator== - Compare two property instances (equal)

 The operation compares the two operands and returns
true (YES) when the first operand is equal to then the
second operand and false (NO) otherwise.

 - 463 -

i0 - Compare with other property handle

 This operator compares the value in the property handle
with the value in the passed property handle. Data con-
version is performed when required.

logical PropertyHandle :: operator== (const PropertyHandle

&cprop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01 - Compare with string value

 This operator compares the value in the property handle
with the value in the passed string. Data conversion is
performed for the string when required.

logical PropertyHandle :: operator== (char *string)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

i02 - Compare with 32-bit integer value

 This operator compares the value in the property handle
with the passed integer value. Data conversion is per-
formed for the passed value when required.

logical PropertyHandle :: operator== (int32 long_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

- 464 -

i03 - Compare with double value

 This operator compares the value in the property handle
with the passed double float value. Data conversion is
performed for the passed value when required.

logical PropertyHandle :: operator== (double double_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

double_val

i04 - Compare with date value

 This operator compares the value in the property handle
with the passed date value. Data conversion is per-
formed for the passed value when required. Converting
date values to string values may result in different string
values for the same date value depending on the nation-
al setting. Hence, string values should not be compared
with date values. In this case it is more appropriate to
compare the date values directly (ph.GetDate() ==
date_val).

logical PropertyHandle :: operator== (dbdt date_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

date_val Date value

 The data value is passed in the internal data format.

i05 - Compare with time value

 This operator compares the value in the property handle
with the passed time value. Data conversion is per-
formed for the passed value when required. Converting
time values to string values may result in different string
values for the same time value depending on the nation-
al setting. Hence, string values should not be compared
with time values. In this case it is more appropriate to
compare the time values directly (ph.GetTime() ==
time_val).

logical PropertyHandle :: operator== (dbtm time_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

 - 465 -

time_val Time value

 The time value is passed in the internal data format.

i06 - Compare property handles

 This operator compares the property handles, i.e. the
cursor objects referenced by the property handle. Prop-
erty handles are considered as equal, when they refer to
the same cursor.

logical PropertyHandle :: operator== (PropertyHandle

*property_handle)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

property_handle Pointer to a property handle

 Is a pointer to an (usually) opened property handle.

operator> - Compare two property instances (greater)

 The operation compares the two operands and returns
true (YES) when the first operand is greater than the
second operand and false (NO) otherwise.

i0 - Compare with other property handle

 This operator compares the value in the property handle
with the value in the passed property handle. Data con-
version is performed when required.

logical PropertyHandle :: operator> (PropertyHandle &prop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i01 - Compare with string value

 This operator compares the value in the property handle
with the value in the passed string. Data conversion is
performed for the string when required.

logical PropertyHandle :: operator> (char *string)

- 466 -

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

i02 - Compare with 32-bit integer value

 This operator compares the value in the property handle
with the passed integer value. Data conversion is per-
formed for the passed value when required.

logical PropertyHandle :: operator> (int32 long_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

i03 - Compare with double value

 This operator compares the value in the property handle
with the passed double float value. Data conversion is
performed for the passed value when required.

logical PropertyHandle :: operator> (double double_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

double_val

i04 - Compare with date value

 This operator compares the value in the property handle
with the passed date value. Data conversion is per-
formed for the passed value when required. Converting
date values to string values may result in different string
values for the same date value depending on the nation-
al setting. Hence, string values should not be compared
with date values. In this case it is more appropriate to
compare the date values directly (ph.GetDate() >
date_val).

logical PropertyHandle :: operator> (dbdt date_val)

 - 467 -

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

date_val Date value

 The data value is passed in the internal data format.

i05 - Compare with time value

 This operator compares the value in the property handle
with the passed time value. Data conversion is per-
formed for the passed value when required. Converting
time values to string values may result in different string
values for the same time value depending on the nation-
al setting. Hence, string values should not be compared
with time values. In this case it is more appropriate to
compare the time values directly (ph.GetTime() >
time_val).

logical PropertyHandle :: operator> (dbtm time_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

time_val Time value

 The time value is passed in the internal data format.

operator>= - Compare two property instances (greater or equal)

 The operation compares the two operands and returns
true (YES) when the first operand is equal to or greater
than the second operand and false (NO) otherwise.

i0 - Compare with other property handle

 This operator compares the value in the property handle
with the value in the passed property handle. Data con-
version is performed when required.

logical PropertyHandle :: operator>= (PropertyHandle &prop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

- 468 -

i01 - Compare with string value

 This operator compares the value in the property handle
with the value in the passed string. Data conversion is
performed for the string when required.

logical PropertyHandle :: operator>= (char *string)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

string String area

 Pointer to the 0-terminated string area.

i02 - Compare with 32-bit integer value

 This operator compares the value in the property handle
with the passed integer value. Data conversion is per-
formed for the passed value when required.

logical PropertyHandle :: operator>= (int32 long_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

long_val Integer value

 The value is passed as platform independent 32-bit inte-
ger value.

i03 - Compare with double value

 This operator compares the value in the property handle
with the passed double float value. Data conversion is
performed for the passed value when required.

logical PropertyHandle :: operator>= (double double_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

double_val

 - 469 -

i04 - Compare with time value

 This operator compares the value in the property handle
with the passed time value. Data conversion is per-
formed for the passed value when required. Converting
time values to string values may result in different string
values for the same time value depending on the nation-
al setting. Hence, string values should not be compared
with time values. In this case it is more appropriate to
compare the time values directly (ph.GetTime() >=
time_val).

logical PropertyHandle :: operator>= (dbtm time_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

time_val Time value

 The time value is passed in the internal data format.

i05 - Compare with date value

 This operator compares the value in the property handle
with the passed date value. Data conversion is per-
formed for the passed value when required. Converting
date values to string values may result in different string
values for the same date value depending on the nation-
al setting. Hence, string values should not be compared
with date values. In this case it is more appropriate to
compare the date values directly (ph.GetDate() >=
date_val).

logical PropertyHandle :: operator>= (dbdt date_val)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

date_val Date value

 The data value is passed in the internal data format.

operator[] - Locate property instance

 The operator can be used to provide an instance instead
of the Provide() function.

(-> Provide())

- 470 -

i0

PropertyHandle &PropertyHandle :: operator[] (int32 set_pos0)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

set_pos0 Position in collection

 The position of an instance in a collection depends on
the selected index. if the collection is unsorted the posi-
tion is the only way for accessing the instance.

For sorted collections the position is determined accord-
ing to the instance key. If thee is a contradiction between
position and key value the position will be ignored.

Special positions are

CUR_INSTANCE

CUR_INSTANCE refers to the currently selected in-
stance. If no instance is selected it refers to the first in-
stance.

FIRST_INSTANCE

FIRST_INSATNCE (0) refers to the first instance in a
collection according to the selected index (sort order).

LAST_INSTANCE

FIRST_INSATNCE (0) refers to the last instance in a
collection according to the selected index (sort order).

i02

PropertyHandle &PropertyHandle :: operator[] (PropertyHandle

&prop_hdl)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

i1

PropertyHandle &PropertyHandle :: operator[] (void *skey)

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

 - 471 -

skey Sort key

 The key is provided in the internal key format. When
necessary the key value can be converted from a string
into the internal format using the ({.r pib.StringToKey}())
function. Regardles on the type key values are passed
as (char *) areas.

operator^ - Exclusive OR operation

 The operator returns true (YES) if exactly one of the op-
erands is true and NO otherwise.

(-> IsTrue())

logical PropertyHandle :: operator^ (const PropertyHandle

&cprop_hdl) const

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

operator| - OR operation (union set for collections)

 The union operation is supported for collections, only. It
can be used instead of the Union() function (Un-
ion(operand1,operand2)).

The result is returned in a property handle that is created
temporarily. You can assign the result to another proper-
ty handle or performing further operations.

PropertyHandle PropertyHandle :: operator| (PropertyHandle

&prophdl_ref)

Return value

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

operator|= - OR operation (union set for collections)

 The operator returns the result of a union operation in
the first operand.

(-> operator|)

PropertyHandle &PropertyHandle :: operator|= (PropertyHandle

&prophdl_ref)

- 472 -

Return value Reference to the property handle that contains the result
of an operation (usually the calling property handle).

prophdl_ref Reference to Property handle

 Is a reference to an (usually) opened property handle.

operator|| - Logical OR operation

 The operator returns true (YES) if one of the operands is
true and NO otherwise.

(-> IsTrue())

logical PropertyHandle :: operator|| (const PropertyHandle

&cprop_hdl)

Return value The function returns YES when the question was an-
swered positivly. Otherwise it returns NO.

cprop_hdl Property Handle

 Is a reference to an (usually) opened property handle.

~PropertyHandle - Destructor

 The function wil close the property handle and destroy
the handle object.

 PropertyHandle :: ~PropertyHandle ()

 - 473 -

UtilityHandle -

CloseDAT -

logical UtilityHandle :: CloseDAT ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

CloseDataSource1 -

logical UtilityHandle :: CloseDataSource1 ()

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

NeverCalled -

void UtilityHandle :: NeverCalled ()OpenDAT -

DataSourceHandle *UtilityHandle :: OpenDAT (PIACC accopt, logi-

cal netopt, logical sysappl)

Return value The data source handle contains definitions for external
and internal resources (resource names and opened
resource handles)

accopt Access option

 The access option defines the way instances in a prop-
erty handle are to be accessed (read, update, write).

netopt

OpenDataSource1 -

logical UtilityHandle :: OpenDataSource1 (char *dbname)

Return value The value is YES if the function returns an error. In case
of normal termination the value is NO. When the function
returns YES more detailed error information are availa-
ble in the error object.

dbname

- 474 -

OpenRES -

DataSourceHandle *UtilityHandle :: OpenRES ()

Return value The data source handle contains definitions for external
and internal resources (resource names and opened
resource handles)

OpenSYS -

DataSourceHandle *UtilityHandle :: OpenSYS ()

Return value The data source handle contains definitions for external
and internal resources (resource names and opened
resource handles)

~UtilityHandle -

 UtilityHandle :: ~UtilityHandle ()

