
01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100011010
run

BNF Parser Tools

ODABANG

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, August 2016

Content

1 Introduction...4
Platforms..4
Open Source..4
Classes..4

2 BNF Parser..5
Defining a BNF...5
Create parser...5
Analysing expressions...5
Processing a BNFData tree...5

Defining a BNF..6
BNF Syntax..6
Standard Symbols..11
Ordering symbols...13
Optimisation...15

User defined BNF syntax..16

Create Parser..17
Build Parser...17
Generate parser class..18
Check Expressions..18

Analyzing expressions..19

Processing a BNFData tree..20
Print syntax tree...20
Evaluate a syntax tree..20

3 Debugging BNF...21
BNFTrace...21
BNFDebug...21
Output..21

4 Example...22
Create parser...22
Create BNF tree...23
Create operation hierarchy...23
Evaluate expression...24

5 GenerateParser Utility..26
GenerateParser...26

Page 3 of 26

1 Introduction

BNF parser tools provide functionality for analysing BNF
based expressions. The document defines how to define
problem relevant BNF but also how to change BNF syn-
tax for special purposes. Tools are provided for generat-
ing ad-hoc or C++ BNF parser functions. In order to loc-
ate errors, several protocol and debug functions are
provided.

Platforms Parser tools are defined as platform independent C++
classes for Windows platforms as well as for UNIX plat-
forms (Linux, Solaris).

Open Source The Parser tools are open source and can be used for
commercial as well as for non commercial reasons.

Classes Besides parser tools, two classes are provided that allow
analysing BNF based script files. Detailed function defin-
itions are provided in class reference (ODABA Online
Documentation (v.r.s) / Reference documentation /
ODABA Application Program Interface / Service
Classes)

BNFParser The BNFParser class provides functionality for analys-
ing script files or strings based on user-defined BNF. As
result, the class provides a BNFNode tree.

BNFNode The class provides functionality for accessing nodes in
the tree. BNF nodes always get a type, which corres-
ponds to the BNF symbol that classifies the data man-
aged by the node.

http://www.run-software.com/content/documentation/odaba/
http://www.run-software.com/content/documentation/odaba/
http://www.run-software.com/content/documentation/odaba/

2 BNF Parser

BNF classes are provided for defining expression by
means of BNF, creating or generating BNF parsers
based on a BNF definition and analyzing strings accord-
ing to the defined syntax.

You may generate a C++ class for your parser or create
an ad-hoc parser according to a given BNF. When pars-
ing an expression the parser returns a syntax tree, that
provides the values for the symbols found in the expres-
sion.

A BNF definition may refer to symbols defined in another
BNF definition. This allows defining common BNF sym-
bols e.g. for name and number (as in BNFStandardSym-
bols).

A string according to a given BNF syntax is based on a
(top) BNF symbol. You may derive a specific BNF pars-
ers for each type of BNF you want to support. The BNF
is defined in the constructor for the BNF parser. Any
number of spaces is allowed between symbols in a BNF
but not required. Spaces are usually considered as sep-
arators between symbols.

Using BNF parser tools requires the following steps:

Defining a BNF Using parser classes requires a BNF definition that de-
scribes the syntax for the expressions to be parsed.
Specific rules for defining a bnf syntax are described in
“Defining a BNF”.

Create parser From a given BNF definition you may create an ad-hoc
parser or generate a C++ class for your parser definition.
Creating an ad-hoc parser is good for testing the BNF,
while generating a parser class can be considered as fi-
nal step.

Analysing expres-
sions

Analysing expressions for a given syntax will create a
BNF data tree, which contains nodes for each symbol
found in the BNF.

Processing a BN-
FData tree

The BNFData tree contains the nodes for the symbols
found in the analyzed expression. You may list the BNF-
Data tree or use several function for extracting the data
for the nodes.

Page 5 of 26

Defining a BNF

Using parser classes requires a BNF definition that de-
scribes the syntax for the expressions to be parsed. The
rules for defining a BNF are described by a BNF, again,
which is self-describing. The BNF described here in-
cludes some practical extensions as keywords and con-
currency count.

BNF Syntax The BNF syntax (i.e. the meta-BNF) is defined as fol-
lows:

 bnf := bnf_stmt(*)
 bnf_stmt := definition | keyword | reference | comment_line
 | nl

 definition := sym_name def_sym rule [comment] nl
 def_sym := ‘:=’ | ‘|=’ | ‘==’
 rule := prule [alt_prule(*)]
 alt_prule := '|' prule
 prule := ext_symbol(*)
 ext_symbol := elm_symbol [multiple]
 multiple := '(' maxnum ')'
 maxnum := '*' | std_digits
 elm_symbol := sym_name | std_strings | impl_symbol |
 opt_symbol | char_set
 impl_symbol := '{' rule '}'
 opt_symbol := '[' rule ']'

 char_set := charset | ex_charset
 ex_charset := '^' charset
 charset := '(' val_list ')'
 val_list := val_def [valdef_ext(*)]
 valdef_ext := ',' val_def
 val_def := value | val_int
 val_int := value '-' value
 value := std_digits | std_strings

 keyword := sym_name '::' keydef [alt_keydef(*)] nl
 alt_keydef := '|' keydef
 keydef := cstring

 reference := name '::=' symref nl
 symref := class_ref | symbol_ref
 class_ref := 'class' '(' name ')'
 symbol_ref := 'ref' '(' name ')'

 sym_name := name
 name := std_name
 comment_line:= comment nl
 comment := '//' std_anychar(*)
 CC := '//'

 std_symbols ::= class(BNFStandardSymbols)
 std_name ::= ref(std_name)
 std_digits ::= ref(std_digits)
 std_strings ::= ref(std_strings)
 std_anychar ::= ref(std_anychar)
 nl ::= ref(std_nl)

You may define your own BNF specification, as long as
you define the symbols with red bold letters. Other red
symbols are optional and can be defined in your specific
BNF definition (see “User-defined BNF Syntax”).

Page 7 of 26

Separators Blanks and tabs (9) are considered as separators
between BNF symbols and must not be defined expli-
citly. New line characters (10,13) can be defined as
automatic separators as well, but here, new line charac-
ters are used as symbols and not as separators, which
allows terminating a BNF statement by new line charac-
ters.

Note, each BNF statement requires a line break at the
end, i.e. the last statement must be followed by a line
break as well, which results in an empty line of the defin-
ition file.

comments A character sequence introducing a comment can be
defined by the CC (comment characters) symbol. Any
sequence beginning with this string at the beginning of a
line or after any separated symbol (symbols that can be
followed by one or more separators) is considered as
comment until the line end. Thus, comments can be
made at each end of line or as separate comment.

CC := ‘//’

The CC symbol is a reserved symbol and cannot be
used otherwise.

bnf A BNF definition contains a number of BNF statements,
which are symbol definitions (symdef), symbol refer-
ences (symref) or comments. Each statement is termin-
ated by line break.

definition A symbol definition defines one or more production rules
(prule) for a symbol in the BNF or an empty line. There
are two define symbols supported for rule definitions.

:= This definition symbol defines a normal rule definition.
Normal production rules check keywords before looking
for complex symbols. When an unexpected keyword ap-
pears, analyzing the expression terminates with error.

== This definition symbol defines a simple symbol, which
will not check keywords, i.e. keywords are accepted as
valid strings and are not interpreted as keywords.

|= This definition symbol defines a break symbol. When
having complex BNF definitions, errors in the string to be
analysed may make analysing very inefficient, since the
parser tries to evaluate all possible paths to find a solu-
tion for the problem. Break symbols may increase the
performance, since an error in a break symbol causes
the parser to stop immediately.

rule A definition rule may consist of any number of simple
production rules separated by ‘|’.

alt_prule Any number of alternative production rules may follow a
production rule.

prule A production rule for a symbol is a list of single or mul-
tiple symbols, which might be defined as optional.

ext_symbol An extended symbol is a symbol which may be suc-
ceeded by a multiplier.

multiple Multiple symbols is a small extension to standard BNF
which allows defining a certain number or any number of
symbols in a BNF definition. The following expression

x := symbol(*)

maxnum Defines any number of symbols and corresponds to

x := symbol [x]

Using multiple symbols has two advantages. One is that
it becomes much easier to define specific numbers of
symbols as maximum 4. The other advantage is that a
multiple symbol appears as list in the BNF data tree,
while the recursive definition would produce a hierarchy.

You may define multiple symbols as optional or not. De-
fining a multiple symbol like x(4) means, that x must ap-
pear exactly 4 times. Defining an optional multiple sym-
bol like [x(4)] means, that x can appear maximum 4
times. Any number of symbols is indicated by ‘*’ as num-
ber. x(*) means, that x must appear at least one time.
[x(*)] means, that x may appear any number of times or
not at all.

elm_symbol Elementary symbols are basic elements of the rule. An
elementary symbol may refer to a defined symbol, a
string constant or an implicitly defined symbol.

Impl_symbol Implicitly defined symbols are symbols, which do not get
an explicit symbol name. Implicit symbols are defined as
rule enclosed in { }.

Page 9 of 26

x := symbol { ‘a’ | ‘b’ }

Which corresponds to:

x := symbol aORb
aORb := ‘a’ | ‘b’

opt_symbol Optional symbols are restricted in this specification to
exactly one symbol. This, again, does not restrict the
power of the BNF but requires for complex optional ex-
pressions the definition of a separate symbol.

char_set A character set allows defining the characters a symbol
may refer to. Character sets have to be defined be-
fore being referenced.

ex_charset An excluding character set defines characters not accep-
ted for a symbol. Excluding character sets are preceded
by ‘ ’̂.

charset A character set defines a list of single values or value in-
tervals enclosed in (…).

val_list
valdef_ext

The value list is a list of values or intervals separated by
comma.

val_def A value definition is a single value or value interval

val_int A value interval defines the lowest and the highest value.
All values between lowest and highest including the lim-
its are considered as included or excluded values (e.g.
‘a’-‘z’ or 33-42)

value A value is a number (sequence of digits) or a character
enclosed in ‘..’ (e.g. ‘a’). Hexadecimal values are not
supported

keyword Keywords are terminal symbols, which are reserved for
specific use, only. Strings defined as keywords cannot
be used in other roles within a document following the
BNF rules.

_structure :: ‘structure’ | ‘STRUCTURE’

The example above defines the ‘structure’ keyword.
Then, ‘structure’ or ‘STRUCTURE’ cannot be used e.g.
as name in the document (e.g. C++ file). One may, how-
ever, use ‘Structure’ as name, since keywords are case
sensitive.

alt_keydef Any number of string symbols can be defined for
keywords.

keydef A keyword definition defines the keyword string.
Keyword strings must not contain spaces, tabs or line
breaks.

reference Symbol references can be used to refer to external sym-
bol definitions in other BNF definitions.

symref A smbol reference is either a class reference (reference
to other parser) or a symbol reference.

class_ref The BNF definition that contains the symbols to be refer-
enced, must be referred to as class reference. Referring
to an external BNF definition makes all symbols defined
in the external definition available in the current defini-
tion.

symbol_ref Specific symbols in the external BNF definition can be
referenced by alias names to avoid naming conflicts for
symbols.

sym_name Symbol names must start with an alphabetical character
and may contain numbers, ‘_’ and ‘&’ in the following
characters

std_strings A string constant consists of one or more characters en-
closed in ‘’ (‘+’, ‘-‘, ‘SELECT’). Quotes within a string
constant can be defined with a preceding backslash (\’).
String constants in a BNF expression acting as
keywords. When being defined in a rule and not as
keyword explicitly, the string constant is not reserved
and can be used as e.g. name in other places.

Standard Symbols The referenced BNF for standard symbols (BNFStand-
ardSymbols) refers to the definition of common used
BNF symbols. Standard symbols define specific charac-
ter sets, numbers and name symbols as described in the
subsequent BNF

Page 11 of 26

std_symbol := std_constant | std_name | std_separator

std_constant := std_float | std_string | std_bool | std_hex
std_bool := std_false | std_true
std_false := 'false' | 'FALSE' | 'NO'
std_true := 'true' | 'TRUE' | 'YES'

std_hex := '0x' std_hexdigs
std_name := std_alpha1 [std_nchars]
std_compname := std_alpha1 [std_compchars]
std_alpha1 := std_alpha | std_nspec

std_number := std_integer | std_decimal | std_float
std_float := std_integer [std_decimalp] std_floatp
std_floatp := 'E' std_integer
std_decimal := std_integer std_decimalp
std_decimalp := '.' std_digits
std_integer := std_digits | '+' std_digits | '-' std_digits
std_line_end := [' '(*)] nl
std_stringn := '"' [std_str2(*)] '"'
std_string := '\'' [std_str1(*)] '\'' | '"' [std_str2(*)] '"'
std_str1 := std_cchar1(*)
std_str2 := std_cchar2(*)
std_cchar1 := std_dapost | std_bss | std_cchar(*)
std_dapost := \' | '' | "
std_cchar2 := std_dquote | std_bss | std_cchar(*)
std_dquote := \" | "" | '
std_bss := '\' std_bsc
std_bsc := '\' | '"' | 'n' | 't' | 'r' | 'x'

std_comment := std_combeg [std_comchar(*)] std_comend
std_combeg := 0x0101
std_comend := 0x0202
std_comchar := 1-255 except: 0x01, 0x02 (for / * and * /)
std_bnfchar := 33-255 except: ; <
std_anychars := std_anychar(*)
std_fixtext := std_ftchar(*)
std_nchars := std_nchar(*)
std_nchar := std_alpha | std_digit | std_nspec
std_compchars := std_compchar(*)
std_compchar := std_nchar | '|'
std_digits := std_digit(*)
std_hexdigs := std_hexdig(*)
std_separators:= std_separator(*)
std_separator := ' ' | std_nl | 0x09

std_digit := 0 - 91

1 This and the following BNF expressions conflict with the BNF syntax and are used here to make the
definitions a little bit shorter

std_hexdig := 0 - 9, A -F, a - f
std_alpha := a - z | A - Z
std_bs := \
std_bsn := \ std_nl
std_bsb := \ (backslash blank)
std_anychar := 1-255 except: 0x0D, 0x0A
std_ftchar := 1-255 except: $ \
std_nspec := '_' | '$'
std_nl := 0x0A | 0x0D 0x0A
std_cchar := 1-255 except: ' " \

You may use alias names in you BNF to make it under-
standable, but you cannot use symbol names, which
have already been defined in the standard BNF defini-
tion or in any other referenced BNF.

Ordering symbols The order of symbols may play an important rule, when
a symbol appears as starting symbol in several produc-
tion rules. To avoid unlimited recursions and parser er-
rors, some additional rules and suggestions for BNF
definitions have been defined.

Completeness All symbols referenced in the BNF definition (production
rules) must be defined either in the BNF definition or in
referenced external BNF definitions. Unresolved symbol
references are shown when running the CreateParser
function or when compiling the generated parser class.

Top-down The BNF definition must be strict top-down, i.e. symbols
should be defined after being referenced, or in other
words: after defining a symbol it should not be refer-
enced anymore.

An exception from this rule are character sets, which
have to be defined before being referenced.

It is not necessary to follow the top-down rule in the BNF
definition file, since the system will reorder the symbols
later according to this rule. When the BNF contains re-
cursive definitions like:

a := b
b := a

which cannot be resolved, the CreateParser function or
the BNF parser constructor will generate an error mes-
sage and the BNF should not be used before solving the
problem. You may create or generate a parser for re-
cursive BNF definitions, but it may run into problems
analyzing expressions defined by such a BNF.

Page 13 of 26

Priority of sym-
bols

The BNF parser assigns a priority to each symbol in the
BNF definition according to the Top-down relationship
between the symbols. When there are different possibilit-
ies for resolving an expression, symbols with higher pri-
ority are resolved before symbols with lower priority.

In some cases there are different ways for setting sym-
bol priorities. In this case the implicit priority given in the
BNF definition (first symbol highest priority, last symbol
lowest) is used to determine the symbol priority.

Two symbols
ahead

Since BNF definitions allow using symbols as starting
symbols in several production rules, ambiguity cannot be
avoided.

x := b
y := b c

To make the syntax as save as possible, more specific
expressions should be defined before less specific ones
(i.e. y should be defined before x in this case, because x
is less specific since any symbol may follow b depending
on the rest of the BNF definition). The parser is using a
“looking two symbols ahead” mechanism, which guaran-
tees, that expressions can be interpreted correctly as
long as ambiguous production rules differ in the second
symbol.

In this case, the latest symbol will get highest priority and
will be evaluated before the previously defined symbol.

Top symbol The first line in the BNF defines the top symbol, which
gives the name to the BNF. When using the parser for
analysing an expression it will always start with the top
symbol, unless another symbol has been defined for
analysing a sub-expression. The top symbol should not
be referenced at any place in the BNF. When references
become necessary, another symbol should be created:

expression := expr_def
expr_def := a
a := ‘a’ expr_def

(Note, that this definition is not recursive, since expr_def
is not referenced as starting symbol.)

Example In the following sections we will consider a simple BNF
for arithmetical operations.

operation := operand [right_side(*)]
right_side := operator operand
operand := number | '(' operation ')'
operator := '+' | '-' | '*' | '/'

std_symbols ::= class(BNFStandardSymbols)
number ::= ref(std_integer)

This is a simple BNF for defining any expression with the
basic arithmetical operations. The expression refers to
the standard definition for integer numbers as defined in
the standard symbol BNF (BNFStandardSymbols).

Optimisation When the BNF is designed in a way that bottom-up
paths are unique, i.e. between two symbols do not exist
more than one path, the parsing process can be optim-
ised. Optimising parsing may increase the parsing speed
by factor 10.

parm := parms option
option := opt_n | opt_b
opt_n := ‘-n’
opt_b := ‘-B'

In the example, there are two possible ways from symbol
‘-‘ to option:

- opt_n option
- opt_b option

In this case, optimisation may lead to problems analys-
ing expressions referring to both paths. The rule is not
obvious and becomes necessary for optimization reas-
ons, only. Since this is often a question of properly defin-
ing the production rules, optimisation can be requested
after redefining the bnf. The example above could be re-
solved as follows:

parm := parms option
option := ‘-‘ opt_char
opt_char := ‘n’ | ‘B’

When the bnf definition is strict in this sense, you may
call Optimise() after constructing the parser in order
to activate optimisation.

Page 15 of 26

User defined BNF syntax

There is not a real standard for writing a BNF. Neverthe-
less, most BNF notations are similar in principle, except
the meta-symbols used in the BNF. Nevertheless, trans-
forming a BNF into another “dialect” is a rather boring
job. Hence, parser classes support alternative BNF
definitions as long as the definition is based on the same
symbols.

The following example shows a BNF notation used for
defining the SQL-99 syntax:

 bnf := bnf_stmt(*)
 bnf_stmt := definition | comment_line | nl

 definition := sym_name '::=' rule nl nl
 rule := prule [alt_prule(*)]
 alt_prule := [nl] '|' [nl] prule
 prule := ext_symbol(*)
 ext_symbol := elm_symbol [multiple]
 multiple := '...'
 elm_symbol := sym_name | std_strings | impl_symbol |
 opt_symbol
 opt_symbol := '[' rule ']'
 impl_symbol := '{' rule '}'
 sym_name := ‘<’ name ‘>’
 name := std_name(*)
 cstring := std_string

 cstring := std_bnfchar(*) | string

 CC := '--'

 std_symbols ::= class(BNFStandardSymbols)
 std_name ::= ref(std_name)
 std_string ::= ref(std_string)
 std_bnfchar ::= ref(std_bnfchar)
 nl ::= ref(std_nl)

For running the syntax analysis with a user defined BNF
syntax, you must define a path to the file containing the
BNF definition.

In the example above, symbol names may consist of
several names separated by blank. One may create a
parser from such a BNF as well, but one cannot gener-
ate a C++ parser class from this definition, since symbol
names are used in the parser class as variable names,
which must not contain blanks.

Create Parser

After a BNF definition has been provided, this can be
tested in two steps. The first step is creating the parser,
which will report definition errors for the BNF definition
file. From a given BNF definition you may create an ad-
hoc parser or generate a C++ class for your parser
definition. Creating an ad-hoc parser is good for testing
the BNF, while generating a parser class can be con-
sidered as final step.

Build Parser There are two ways of building a parser, which are
rather likely.

#include <csos4mac.h>
#include <sBNFParser.hpp>
#include <sBNFData.hpp>

int main(int argc, char* argv[])
{
 BNFParser *bparser;
 BNFData *bdata = NULL;
 char *path = "arop.bnf";
 char *accpath = "arop.exp";

 GenerateParser(path,"e:/parser.cpp");
 if (bparser = CreateParser(path,true))
 bdata = bparser->AnalyzeFile(accpath,true);

// list BNF data tree structure
 if (bdata)
 bdata->Print(0,YES);

 delete bdata; // delete bdata before deleting the parser!!!
 delete bparser;

 return(0);
}

The CreateParser function will print a symbol priority list
on the console (list option in the CreateParser function):

Symbol list
 'arithmetical_operation'
 'operation'
 'right_side'
 'operand'
 'operator'
 'std_symbols'
 ... other std_sybols follow

Page 17 of 26

Since operand and right_side have the same priority, the
sequence in the BNF definition determines the priority
ang gives operand a higher priority since it has been
defined before right_side.

Generate parser
class

Calling the GenerateParser() function as in the example
above will generate a C++ parser class, which can be
compiled immediately. This class may replace the ad-
hoc server created from the BNF definition (Create-
Parser) in the example.

It is suggested creating and testing the parser before
generating the parser class. The CreateParser() function
allows passing a trace file name as third parameter,
which will record all the attempts to resolve an expres-
sion. This is helpful for detecting errors in critical situ-
ations.

Check Expres-
sions

In the second phase you can check several expressions
with the parser created and view the result as BNFData
tree. Calling the parser function Analyze as shown in the
example above allows checking an expression. When
successful, the function returns a BNF data tree, which
can be displayed using the BNFData Print function.

Analyzing expressions

Analysing expressions for a given syntax will create a
BNF data tree, which contains nodes for each symbol
found in the BNF. You may analyse a complete syntax
expression according to a given BNF definition but also
a sub-expression.

For analysing a complete expression you may pass a fi-
lename or a 0-terminated string with the expression to
the parser.

{
 BNFParser *bparser = ...;
 BNFData *bdata = NULL;

 ...

 bdata = bparser->AnalyzeFile(accpath,true);
 bdata = bparser->Analyze(string,true);

}

The skip option in the call (true) indicates, that the parser
will skip separators at the beginning of the expression.

For analysing a sub-expression the parser must be
called with the symbol name the sub-expression corres-
ponds to. The sub-expression must be passed as 0-ter-
minated string in this case.

{
 BNFParser *bparser = ...;
 BNFData *bdata = NULL;

 ...

 bdata = bparser->Analyze(string,”operand”,true);

}

The symbol to be parsed is passed as symbol name. It
must be a valid symbol defined for the parser or a refer-
enced parser.

Since the parser always tries to analyse the complete
expression, the string must not contain data after the
end of the sub-expression. Otherwise the parser ill return
an error.

Page 19 of 26

Processing a BNFData tree

The result of analyzing an expression is a syntax tree,
which consists of BNF data nodes. The syntax tree con-
tains the nodes for the symbols found in the analyzed
expression. You may list the BNFData nodes or use sev-
eral function for extracting the data for the nodes.

Print syntax tree The BNFData nodes in the syntax tree can be displayed
using the BNFData Print function. The result for the ex-
pression

127 + 19 * (13 + 22) - (12/4)

analyzed according the sample BNF arop.bnf will return
the following syntax tree (each line represents a BNF-
Data node):

arithmetical_operation: 127 + 19 * (13 + 22) - (12/4) ...
 arithmetical_operation: 127 + 19 * (13 + 22) - (12/4) ...
 operation: 127 + 19 * (13 + 22) - (12/4) ...
 operand: 127 ...
 std_integer: 127 ...
 right_side: + 19 ...
 operator: + ...
 operator: + ...
 operand: 19 ...
 std_integer: 19 ...
 right_side: * (13 + 22) ...
 operator: * ...
 operator: * ...
 operand: (13 + 22) ...
 operand: (...
 operation: 13 + 22 ...
 operand: 13 ...
 std_integer: 13 ...
 right_side: + 22 ...
 operator: + ...
 operator: + ...
 ... and so on

Each node in the tree is listed with the referenced sym-
bol name and the value for the symbol.

Evaluate a syntax
tree

There are several functions provided in the BNFData
class that support browsing through the syntax tree. Iter-
ator functions provide nodes on the same level, but you
may also look for a specific symbol on a certain level or
recursively. More details are available in the function ref-
erence (www.run-software.com/ODABADocu)

3 Debugging BNF

Analysing syntax strings for a given bnf definition can be
debugged in a limited way. Debugging BNF definitions
requires a console application, which analyses the ex-
pression.

For debugging you need to set run time options, which
can be set as environment variable:

set BNFTrace=c:/temp/trace.lst

or while running the application:

SetOption(“BNFDebug”,”c:/temp/trace.lst”)

BNFTrace Setting the BNFTrace option to a file path will write the
analysing steps to the trace file, which may help to de-
tect syntax loopsor inefficient definitions.

BNFDebug Setting the BNFDebug option to YES will display the
parsing steps on the console. There are a few com-
mands allowing to control the debugging process.

Enter Analyse the next BNF item.

number You may enter a number to skip the next ‘number’ of
parsing steps. Entering a number will reset error or
break commands.

e[rror] The debugger stops, when an error has encountered.

b[reak] The debugger stops at the next break symbol.

Output The debugger displays the analysed BNF symbols and
the symbol names before the prompt character (>). The
symbols names are indented according to their position
in the symbol hierarchy.

Error When an error has been encountered for the symbol, an
asterisk (*) is displayed in front of the symbol name.

Break symbols Break symbols are marked by a plus (+) in front of the
symbol name.

Page 21 of 26

4 Example

An example for arithmetical expressions as being
defined above could look as follows. In order to evaluate
the expression, we provide a hierachical operation tree:

struct Operation {
 public: int32 value; // operand value
 public: Operation *oper; // Left operand
 public: Operation *next; // Right operand
 public: char op; // Arithmetical operation
};

In order to analyse and evaluate the expression, a class
ArOperation has been provided, which creates the
parser, analyses the BNF tree and evaluates arithmetical
expressions entered via command line:

int main (int argc, char *argv[])
{
 ArOperations arOp;
 char expression[1000];
 int rc = 0;
 while (gets(expression)) {
 if (!expression[0])
 break;
 if (arOp.Analyze(expression))
 printf("%d = %s\n",arOp.Execute(),expression);
 }
 return(rc);
}

Create parser In order to create the parser we use the BNF definition
as embedded character string. The parser will be cre-
ated in the ArOperations constructor:

 ArOperations :: ArOperations ()
 : oper(NULL), parser(), node()
{
#include <samples/h/arop.bnf>
// arop.bnf
// operation := operand [right_side(*)]
// right_side := operator operand
// operand := number | '(' operation ')'
// operator := '+' | '-' | '*' | '/'
//
// std_symbols ::= class(BNFStandardSymbols)
// number ::= ref(std_integer)
 parser.create(arop_bnf);
}

Create BNF tree In order to create the BNF tree, ArOperations::Ana-

lyze is called:

bool ArOperations :: Analyze (const odaba::String &sExpression)
{
 bool bState = true;
 Delete(oper); // remove last operation
 oper = 0;

 try {
 node = parser.analyzeString(sExpression);
 node.print("arop.tree",true); // print bnf tree
 oper = AnalyzeOperation(node.toSymbol("operation"));
 node.release();
 } catch (odaba::Exception e) {
 printf("Parser error - could not analyze expression\n");
 printf("last error: %s\n",parser.lastError().area());
 bState = false;
 }
 return(bState);
}

The parser function analyzeString() creates a BNF
tree. In case of errors, the function throws an odaba ex-
ception. When the BNF tree has been creates, the top
node is returned in node.

Create operation
hierarchy

From the BNF tree the operation hierarchy is created by
analysing operations and operands:

Operation *ArOperations::AnalyzeOperation(const BNFNode &bNode)
{
 Operation *arop = Create();
 Operation *last;
 BNFNode right_side;
 int32 rightCount = bNode.count()-1;
 int32 indx0 = 0;
 if (bNode.symbol() == "operand")
 AnalyzeOperand(arop,bNode);
 else { // operation
 AnalyzeOperand(arop,bNode.get("operand"));
 while (indx0 < rightCount) {
 right_side = bNode.get(++indx0);
 last = arop;
 arop = Create();
 arop->oper = last;
 arop->op = right_side.get("operator").value().index(0);
 arop->next = Create();
 AnalyzeOperand(arop->next,right_side.get("operand"));
 }
 }
 return(arop);
}

Page 23 of 26

bool ArOperations::AnalyzeOperand (Operation *arOperation,
 const BNFNode &bNode)
{
 BNFNode bnode = bNode;
 Operation *op;
 bool bState = true;

 if (bnode.isSymbol("std_integer")) // number)
 arOperation->value = bnode.value().toInteger();
 else {
 if (!bnode.isSymbol("operation"))
 bnode = bnode.get("operation");
 arOperation->oper = AnalyzeOperation(bnode);
 }
 return(bState);
}

The Create() function is called in order to create and
initialize new operation elements. Since the expression
syntax has been checked, in this phase errors resulting
from invalid expressions can be excluded. BNF nodes
always appear in a sequence according to the BNF
definition and BNF elements (symbols) can be accessed
via symbol names.

Evaluate expres-
sion

After the operation hierarchy has been setup, the ex-
pression can be evaluated::

int32 ArOperations :: Execute ()
{
 int32 iValue = Value(oper);
 return(iValue);
}

int32 ArOperations :: Value (ArOperations::Operation *arOpera-
tion)
{
 int32 iValue = 0;
 int32 iLeft = 0;
 int32 iRight = 0;

 if (arOperation) {
 iLeft = Value(arOperation->oper);
 iRight = Value(arOperation->next);
 if (arOperation->oper && !arOperation->next)
 iValue = iLeft;
 else if (!arOperation->oper && arOperation->next)
 iValue = iRight;
 else switch (arOperation->op) {
 case '+' : iValue = iLeft + iRight;
 break;
 case '-' : iValue = iLeft - iRight;

 break;
 case '*' : iValue = iLeft * iRight;
 break;
 case '/' : if (right == 0)
 printf("Division by 0");
 else
 iValue = iLeft / iRight;
 break;
 default : iValue = arOperation->value;
 }
 }
 return(iValue);

The result will be returned to the main function for print-
ing..

Page 25 of 26

5 GenerateParser Utility

The GenerateParser utility allows creating a parser class
for a specific BNF. This may reduce the analysing time
since the parser need not to be built at runtime.

GenerateParser The GenerateParser utility can be called with the follow-
ing parameters:

GenerateParser def_path
[cpp_path [trace_path [bnf_path]]]

def_path The definition path point to the location, where the BNF-
file for the parser to be generated is stored.

cpp_path The path refers to the location, where the generated C+
+-file will be stored. When the file does already exist, it
will be replaced. When no cpp_path or NULL has been
defined, the generated C++-file is stored at the same
location as the def_file replacing the def_file extension
with .cpp.

trace_path When defining a trace path, the parsing steps of the pro-
cess are recorded. This allows checking, what the
parser has tried to analyse the def_file, which is import-
ant in some cases, when an error occurs. When no
trace path or NULL is defined, no protocol is created.

bnf_path A bnf_path can be passed to the function, when the
BNF specification does not follow the standard definition
of this BNF parser. This allows analysing imported BNF
syntax, which may follow different rules. In this case, a
BNF-definition as described in “User defined BNF syn-
tax” must be provides at the location the bnf_path is
pointing to.

	1 Introduction
	2 BNF Parser
	3 Debugging BNF
	4 Example
	5 GenerateParser Utility

