
- 1 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100101001

run

Database categories and ODABA

ODABA NG

Reinhard Karge 22nd May 12

- 2 -

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

 www.run-software.com

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com

Berlin, May 2012

http://www.run-software.com/

- 3 -

Table of Contents
1Introduction...4
2Database categories - ODABA and the world of databases6

2.1Database schema ...8
2.1.1P0 database schema ...10
2.1.2P1 database schema ...11
2.1.3P2 database schema ...12
2.1.4P3 database schema ...13

2.2Database consistency and intelligence15

2.3Database queries ..17

2.4Implementation view ..19

2.5Event handling ..20

2.6Transactions ..22

3References ...23

- 4 -

1 Introduction

ODABA is a terminology-oriented database management system, which al­
lows reflecting IT problems and solutions in terms of human language (ter­
minology model). The theoretical base for ODABA is the “Unified Database
Theory”, which classifies different database systems (Key/Value stores,
Relational and OO-databases, data warehouse) by schema levels.
As P3 database, ODABA not only supports OODBMS features, but also Key/Value
Store technologies as well as data warehouse technologies (partially). Moreover,
ODABA provides an OR-Mapper, that allows transforming ODABA data models
into relational models (MySQL, Oracle, …) and also supports RDBMS as database
mirror or primary data store.

With OSI, ODABA provides a JAVA like NoSQL scripting language for ac­
cessing and manipulating data. Instead of SQL statements, ODABA sup­
ports access by database variables and operation paths. A comprehensive
C++ API also provides comfortable database access features. The ODABA
object definition language (ODL) is an extension of the ODMG 2003 data­
base standard for object-oriented databases. Beside enhanced database
concepts, ODABA supports scalable client/server architectures (including
NoServer applications), additional storage formats and many other exten­
sions.

With Terminus, ClassEditor, GUI Designer and Object Commander,
ODABA provides a series of rapid application development (RAD) tools,
which support fast development for complex applications. ODABA and
tools provides a suite for application developers in different areas.

ODABA is specialized in handling complex systems with many relation­
ships between different objects. Thus, ODABA is a powerful system for de­
veloping business applications, but also simple applications for personal
use (as the Media Player example).

ODABA allows managing database information much easier as compar­
able systems (no SQL required!). Moreover, ODABA technologies make
application development simpler and faster than comparable tools of big
database vendors.

Terminology based development allows defining customer's requests in
terms of human language (terminology model). Terminology models may
be transformed into database models, which might be used immediately for
GUI application design. Database models may also be scripted using ODL
or may be defined by means of the ClassEditor, which also provides wiz­

- 5 -

ards for inexperienced users. Business rules (stored procedures and event
handler) may be implemented in OSI, but also in C++, as well as applica­
tion rules. Based on Qt, GUI kit and Active Data Link technology, ODE al­
lows designing database driven GUI applications.

ODABA also supports document generation features based on Open Doc­
ument Standard. ODE tools support multilingual documentation objects,
which may be composed to documents, HTML pages or online help topics.
The complete WEB documentation (nearly 10 000 HTML pages) and many
documents have been generated from ODE documentation topics.

ODABA has been used in different production environments since 1994. In
August 2010, ODABA has been released as Open Source Software under
GPL for Linux and Windows platforms. ODABA is maintained and released
(4-6 releases per year) by run-Software and distributed via Source Forge
and other Open Source platforms. There is not yet a developer community,
but run-Software has moved to Büro 2.0 community and became member
of OSB (Open Source Berlin, 2011) in order to improve interaction with the
community. ODABA has been the base for several commercial projects as
BRIDGE/METAS (knowledge base for statistical offices), BELAMI (ac­
counting and contract management system for MITROPA/DSG) or
KUVERT (Insurance management for an Internet Insurance agency). RE­
FEUS (developed by the Refeus group) provides a knowledge collection
system for students and scientists.

- 6 -

2 Database categories - ODABA and
the world of databases

The paper tries to classify database management systems by different
classifications in order to demonstrate the position of ODABA in the world
of databases. A general way of classifying databases by degree of order
has been introduced in [UDT]. In order to introduce the smallest data unit,
atomic data items have been introduced in [UDT] as: : "An atomic state s
describes the relation between an identifiable object (o) and a property (p)
with a property value (v) at a given point in time (t), i.e. a data item or state
consists of four components, where the value is a function of the three oth­
er components

s = (o,p,t,v) where v = S(o,p,t)
Simply said, it means, that a value for a state (fact) makes sense, only,
when the object, it belongs to, the property, it describes and the time point
of measure is known. 1,79 cm does not make sense, as long as one does
not know, that this is my (object) height (property) today (time). The func­
tion S, which describes the relation between state identifying components
and value is usually called Schema.

The state does not say anything about the complexity of a fact or state, i.e.
the property might be complex (as address (p) consisting of country, city,
zip code, street and house number) or may also define a collection of val­
ues (given names, but also children of a person are typical examples for
collection properties. Since the value is a function of object, property and
time, data can be arranged in terms of those components, i.e. a schema
for storing data may be defined without knowing the data itself.

Thus, one important DBMS classification can be described as schema
classification, which defines typical characteristics for the degree of order­
ing properties in different DBMS families. In [UDT], four database families
have been introduced, which provide a complete classification for DBMS
by schema characteristics:

• State model (P0 model) - A simple schema typically used as base
for key/value and document stores often called NoSQL databases
(HBase, BigTable, MongoDB CoiuchDB and many others).

• Type model (P1 model) - Arranging properties in data types, which
is typically for relational databases, i.e. the entity-relationship model
(MySQL, Oracle etc.)

- 7 -

• Class model (P2 model) - Arranging properties in types and objects
and collections, which includes collection and relationship proper­
ties. The class model is the base for object-oriented databases ac­
cording to [ODM] specifications, the object model (Versant, Object­
Store ...)

• Classification model (P3 model) - Arranging properties in types, ob­
jects in collections and collections in collection hierarchies of any
nesting level. The classification schema is the base for terminology
models and implicitly plays a role for data warehouse systems. Be­
cause of its terminology orientation, these databases are called ter­
minology-oriented DBMS (ODABA).

In the following sections we will consider DBMS of these four categories,
its advantages and disadvantages and typical use cases. Common for all
databases is the fact, that object and time dimension are often not explicitly
defined in a database schema, i.e. object and time dimension are con­
sidered as open dimensions in most DBMS. Thus, schema definitions
mainly describe the way, properties are arranged in a database.

- 8 -

2.1 Database schema

A database schema defines the way, data is arranged in the data store, i.e.
is defines the schema function S. State identifying components are
handled differently in different DBMS. In general, the object dimension is
considered as open dimension, which simply defines a collection of data
items belonging to one or more kind of individual objects. In order to locate
a single individual object in the collection, usually one or more object iden­
tifiers are defined in the schema and access functions are provided, which
allow accessing an object instance by means of those identifiers. The time
component is ignored in most schema functions and the application cares
about time in the one or the other way. Hence, the main aspect schema
functions are focused on, is the way properties are arranged.

While P0 DBMS require a minimal schema definition, P3 databases require
rather complex schema specifications. Hence, P0 databases are very
simple to create and are very flexible in use. Relational (P1) DBMS order
properties in type (table) definitions and allow defining relationships
between tables in terms of link attributes. Object-oriented (P2) DBMS sup­
port collection properties (relationships), i.e. a property may represent a
collection of related objects. Terminology-oriented (P3) DBMS support set
relations (superset/subset relations) and hierarchical classifications, which
result from typical issues of human language [UDT] [TM2].

The graphic above is not result of exact measures, but reflects the schema
definition effort by practical experience and amount of standard definition
elements of P1, P2 and P3 schema definitions. It becomes obvious, that the
simplest way to start is running a P0 database, since this requires nearly no
effort for preparing the database.

- 9 -

Theoretically, P1 schemata include P0 schemata, P2 the P1 schemata and
P3 the P2 schemata. This is, however, not the case in practice. Thus, rela­
tional and object-oriented DBMS do not support ad-hoc attribute exten­
sions for types and tables and are, hence, not as flexible as P0 databases.
On the other hand, object-oriented and relational DBMS schemata are
equivalent and can be transformed into each other [ORM]. P3 DBMS
ODABA is an extension of the [ODM] standard for object-oriented database
models. Moreover, by providing property extension features for data types,
ODABA also includes P0 DBMS features concerning flexibility.

- 10 -

2.1.1 P0 database schema

Often, P0 DBMS are divided into key/value stores and document data­
bases. Key/value stores (e.g. HBase, BigTable) simply implement the
schema function by mapping any kind of value to object identifiers (key),
property name and time stamp. Here, property becomes an open schema
dimension, too, and one might add any property or new version for a value
without defining it in an explicit schema. The key/value store is the most
consequent implementation of a schema function S, since it exactly does,
what the schema function requires: assigning a value v to an (o,p,t) vector.

Document databases (e.g. MongoDB, CouchDB) usually store one entry
per object, which contains all the properties belonging to the object. Num­
ber and type of properties are not limited, i.e. properties become an open
dimension, too, just being ordered vertically. The way object properties are
stored in the "document" depends on the document database. In general,
any kind of semi-structured representation as JSON, XML, OIF, which
refers to property/value pairs, might be used. Usually, these databases do
not handle time dimension and consider data as timeless. Object (docu­
ment) versions are possible by extending the key component for docu­
ments but property versions are usually not supported.

In any case, P0 schema is the most flexible and most simple database
definition. The price for simplicity is a lot of implementation work, when
problems become more complex.

- 11 -

2.1.2 P1 database schema

P1 DBMS order properties in data types (or tables). Ideally, each object in­
stance is stored in one table row containing all its relevant properties.
Thus, a P1 schema defines the set of all possible properties in the data­
base in terms of table/attribute pairs. The a strict P1 schema definition con­
cerning properties will limit the use of P1 databases, since one cannot ex­
pand properties at run-time. On the other hand, it provides a sort of trusted
state, since one can rely on the definitions provided in the schema.
Moreover, constraints might be defined in order to guaranty logical consist­
ency for values and indexes based on properties (attributes) defined for the
schema.

P1 schemata are typically defined for relational DBMS (MySQL, Oracle, MS
SQL, ...). In order to define relationships between object instances
(entity/relationship schema), relational DBMS usually do one step toward
to P2 schemata by including kind of collection support into the schema
definition. Relational DBMS are highly standardized and used since more
than 50 years. Schema definitions as such are not very difficult, but usually,
database schemata have to be normalized (i.e. no redundancy), which
makes definitions more difficult. Also artificial tables for defining M:N rela­
tionships make definitions a bit more complicate.

The time component is not explicitly supported in relational DBMS and ap­
plications have to decide, where to store the time component. This also
means, that data retrieval does not include the time component, as long as
it is not part of the table instance (column) or property name.

Still, relational schemata are comparable simple to define. Because of high
degree of standardization, one may easily transfer schema definitions
between different kind of relational DBMS. Hence, relational databases are
typically used for providing business applications or for storing statistical
data. Because of ACID requirements, relational DBMS perform not very
well in distributed systems, where P0 databases often provide better solu­
tions. Relational databases also cause problems, when data structure be­
comes very complex, since nested joins will reduce the performance ex­
tremely.

- 12 -

2.1.3 P2 database schema

Similar to P1 DBMS, P2 DBMS (mainly referred to as object-oriented
DBMS) arrange properties in types. Object-oriented DBMS are known
since about 1990. In contrast to relational DBMS, object-oriented DBMS al­
low complex properties, i.e. types create a type of ontology. Conceptually,
type hierarchies belong to the P1 schema, but most relational DBMS do not
support types as such. The extension of P2 schemata compared with P1

schemata is the support of collection properties (relationships between in­
dividual objects). Another schema extension for object-oriented DBMS is
the support of inheritance relations, which, in fact, are just a special kind of
relationships.

Thus, P2 schemata are type and collection based, A special effect resulting
from set relations (properties) in contrast to table relations are inverse rela­
tionships in order to reflect bi-directional links between object instances.
Similar to relational DBMS, object-oriented DBMS do not support time
component explicitly. One may, however, define time as part of the data
type (attribute) or in the property name. Thus, open time component might
be implemented on object instance level, but not on property level. This,
however, is not a limitation of P2 schemata but of implementation of many
object-oriented DBMS.

P2 schemata are closer to human language reflections and thus, easier to
understand. Nevertheless, P2 schemata include a lot of possible errors and
most object-oriented DBMS do not support all requirements, which result
from collection support. Thus, it depends on the database provider, how
much support is given for schema definitions, and this is, in most cases,
not very much, which makes schema definitions even more difficult to
handle.

P2 schema databases are a good mean for handling complex problems.
They are faster accessing linked objects but are slower when accessing
large amount of object instances. Many P2 DBMS support online schema
evolution, which makes changes in the data model easier. Thus, P2 DBMS
are predestinated for business applications, which require often extensions
or changes when the business model changes.

- 13 -

2.1.4 P3 database schema

The P3 schema consequently extends the P2 schema family by adding sup­
port for collection hierarchies. Collection hierarchies are supported in two
ways: either by hierarchical classifications provided in the schema defini­
tion or by defining set relations in terms of subsets and supersets. Includ­
ing classifications and set relations into the database schema is one more
step closer to human language, because P3 DBMS are called terminology-
oriented DBMS.

One important P3 DBMS currently known is ODABA, which became a P3

database about 2000. It completely includes the ODMG schema definition
requirements [ODM] not only conceptually, but also complies with the
ODMG object definition language (ODL), so that it becomes easy to up­
grade from P2 to P3 schema. Basically, ODABA is based on the terminology
model 2 [TM2], which defines the essential database requirements result­
ing from human language model. The P3 schema is limited to a predefined
number of properties, too. In order to reach the flexibility of key/value and
document stores, but also for meeting human language requirements,
ODABA supports property extensions, i.e. one may add any kind of prop­
erty to any object instance, i.e. object instances are extendable beyond its
data type definition. ODABA also supports the time component in different
ways from individual object version up-to consistent object space version.
Thus, time becomes an open component similar to the object dimension. In
addition, ODABA provides several schema extensions, which result from
the terminology approach (instance ownership, instance dependency, de­
lete empty, auto-deletion).

Terminology based P3 DBMS are closely related to human language reflec­
tion, which makes schema definitions easier, on the one hand, but on the
other - human language is not easy. ODABA provides GUI tools besides
the ODL, which support terminology and database model transformation,
defining schemata assisted by wizards and also include schema checking
functions.

Besides the terminology-oriented database ODABA several OLAP tools
(e.g. SuperStar) provide elements of the P3 schema especially concerning
the set hierarchy and aggregation aspect, which is not covered by ODABA.
Those must be considered, however, as database tools rather than as in­
dependent database systems.

Similar to P2 DBMS, P3 DBMS are a good mean for solving complex prob­
lems. Moreover, the terminological approach supports user-friendly project

- 14 -

specifications. Set hierarchy support provides automatic maintenance of
aggregates but is not yet supported by ODABA.

- 15 -

2.2 Database consistency and intelligence

It is not a big help, when the schema is just more difficult to define, but
nothing more. Hence, the more complex a schema definition is, the more
consistency requirements have to be fulfilled. Here, we will talk about con­
sistency rules resulting from schema definitions, but not consistency rules
defined by the application (logical consistency). We also expect at any
time, that the database system cares about its internal consistency rules.

For P0 databases, there is not much to say about. As long as the object
identifier (key) does not change, the only thing expected is that objects are
accessible via key value (and property name, time).

With implementing P1 databases, table relations and indexes create addi­
tional consistency rules. Changing an attribute value, which is part of a key,
one expects, the the DBMS maintains the corresponding indexes.

Moreover, referential integrity is expected for P2 databases (which also in­
cludes relational databases in this case), i.e. when deleting a row in a
table, all referenced to it should be removed or it should not be deleted at
all. This kind of schema consistency is guarantied by most relational and
object-oriented DBMS. Object oriented databases also have to maintain
the inverse relationship, when being defined, but this is not always the
case.

P3 databases have to guarantee the consistency of defined set relations. In
case of ODABA, several schema extensions have been made, which result
from the terminology approach (instance ownership, instance dependency,
delete empty, auto-deletion).

- 16 -

The advantage with low consistency databases (P0 schema) is, that they
will do exactly, what has been implemented in the application. High con­
sistency databases, however, do a lot of work, which is difficult to imple­
ment. But sometimes they seem to behave strange, because one is not al­
ways aware of all the (useful) rules that are executed in order to keep the
database schema consistent. Schema consistency on a high level is a
good thing, as long as one understands the intelligent behavior of the data­
base. Hence, using a P3 schema as supported by ODABA will reduce the
implementation resources for an application extremely, when the problem
is complex.

- 17 -

2.3 Database queries

Many implementation work is related to data access. Since the schema for
a P0 database does not contain much information, access is simple, as
long as single object instances are involved. Selecting object instances by
conditions (SELECT operation), becomes more difficult and joins will cre­
ate a lot of work, when running a P0 database. In order to run complex
queries, P1, P2 or P3 schemata are more efficient. By providing common
query rules (SQL), relational DBMS (P1 schema) allow specifying complex
queries.

Query languages are typically used for accessing data in relational DBMS,
but similar query languages are also supported in object-oriented and ter­
minology-oriented DBMS. In addition, P2 and P3 schemata allow using tra­
versal paths, which becomes possible because of collection properties.
Thus, one might ask for the collection of all children of employees in a
company like

Company('run-software').employees().children()
This could also be expressed in a rather complicate SQL query, since a
property employees could not be defined in a P1 schema. One more fea­
ture becomes possible because of the functional model, which is typically
part of P2 and P3 extended schemata. The functional model implements be­
havior (rules) on type level, which might be included in an operation path:
Company('run-software').employees().ChildrenIncome()

Here, ChildrenIncome might be a complicate algorithm implemented in a
function for data type Person. Since elements of SQL queries (SELECT,
FROM, WHERE etc) may also be implemented as generic functions, oper­
ation paths allow expressing each kind of SQL or OQL query, but are more
flexible, since they might be mixed with other functions and the sequence
of operations is not fixed. Finally, operation paths are shorter and much
closer to human language and thus, easier to handle. On the other hand,
they may contain hidden operations, since referring to object type func­
tions, it is not always obvious, what really happens like in an SQL state­
ment.

In principal, traversal and operation paths are based on P2 schemata and
could be supported by any object-oriented DBMS (which is practical not
the case). Terminology-oriented DBMS require support of operation paths
because of its human language orientation. The graph illustrates query lan­
guage features. It does not consider operation paths for P2 schemata.

- 18 -

Although the P3 schema provides maximum support for efficient queries, all
the extended query features as provided by ODABA could also be provided
by any object oriented P2 DBMS or by object relational DBMS, which
provide an object-oriented view to relational databases. For complex prob­
lems, this will reduce the amount of implementation effort extremely. On
the other hand, when handling large amount of simple structured data, P0

queries will perform better in terms of time and implementation.

In general, simple queries are more efficiently executed in P0 or P1 data­
bases. Complex queries, however, are served much better by P2 or P3

DBMS.

- 19 -

2.4 Implementation view

Creating a database is usually a means to an end, and not just fun. The
end, usually requires implementation in order to provide the required res­
ults. One, but not the only way is dividing implementation into 3 layers:

• Database access layer

• Business layer

• Application layer

Since application and business layers do not depend on the database
schema family, only database access rules are considered here. Because
the missing schema information, the database layer for P0 databases be­
comes very expensive (which is not so important, as long as the data
structure is simple). P1 (relational) databases also require remarkable ef­
fort, since row selections and joins have to be defined in order to gather
the required information. Since P2 databases support collections, many
queries on the database layer become obsolete, but database access layer
operations are still required when it comes to aggregation. This is also not
necessary in many cases, when running a P3 database, which supports set
hierarchies, so that P3 databases rarely require operations on database ac­
cess layer.

Avoiding the database access layer nearly completely when running P2 or
P3 databases will reduce the implementation effort, again. Mainly the col­
lection support in P2 and P3 DBMS will reduces the amount of necessary
rules on the database access layer by 80-90% in many applications. Fur­
ther reduction results from set hierarchy support provided by P3 DBMS.

- 20 -

2.5 Event handling

Event driven applications have been very successful concerning the GUI
part. But also database applications can be implemented much better,
when being based on event mechanisms (active databases). For P0 data­
bases, events are not of interest, since the database layer is implemented
explicitly. P1, P2 and P3 databases, however, rely on generic database ac­
cess rules implemented by the DBMS. At least in order to react on specific
events as automatic row deletions, event handling needs to be supported.

In order to implement business logic independent on application logic,
event handling is also a good mean. For the business logic, it is not so im­
portant, who deleted an object instance and why, but the fact, that is has
been deleted. Thus, handling such kind of events is rather the task of event
handlers (triggers), which are always called when the database detects
such an event.

Different events on object instance (row) level are triggered by relational
DBMS (P1). P2 databases also need to trigger collection events in order to
signal inserting or removing instances from a collection. Unfortunately, only
some object-oriented databases support triggers at all. In order to support
an active database, triggers for event handling are required on all data
levels, which includes not only object instances (rows), but also collections
and attributes (properties).

Event handling mainly depends on the schema concepts supported by the
database. Thus, P1, P2 and P3 databases could support attribute and in­
stance events. P2 and P3 databases could support collection events and P3

databases could support collection hierarchy events. Practically, most rela­
tional databases support instance event handling and database event
handling. Just a few object-oriented databases provide limited support for
instance and property events. ODABA as P3 database does not support
collection hierarchy events but provides comprehensive support for data­
base, object instance and property (attribute and collection) events. In or­
der to fully comply active database requirements, ODABA also supports
events signaling internal state transitions as reading, selecting or unselect­
ing an instance in a collection.

Implementing the business logic completely based on database event
handlers requires triggers at least on instance and collection level. For
providing an active database, that is able to control, e.g. a GUI framework,
property and internal events have to be signaled, too. ODABA provided a
active data link technology [ADT], which translates database events into

- 21 -

GUI vents, which allows running complex GUI applications completely
based on a generic GUI framework.

- 22 -

2.6 Transactions

Since P0 systems do not have consistency requirements, there is no need
for transaction support, but it might be helpful in order to support logical
consistency. Hence, many P0 DBMS guarantee consistency on a rather low
level, while others fulfill ACID (atomicity, consistency, isolation, durability)
requirements. Most P1 DBMS are ACID compliant and use pessimistic or
optimistic locking on instance level.

When a P2 or P3 DBMS guarantees schema consistency simple operations
like adding or deleting an object instance may result into a number of addi­
tional operations caused by e.g. relationship or set consistency rules.
Since each of those operations may call other operations again by event
handler calls, the number of operations caused by a simple function call
might even grow. This will increase the risk of conflicts and dead locks,
which is not a problem of complex schemata but a problem of complex
tasks. Hence, P2 and P3 DBMS run each instance modification within an
implicit transaction, which fails, when any of the involved operations fails.
Locking within implicit transactions might be optimistic or pessimistic. Be­
cause of the collection support, P2 (and P3) DBMS have to support collec­
tion locks, which is usually not the case.

When the success of a transaction depends from one or more instances or
collection, which are not updated, but read only, those have to be locked
explicitly by the application in order to guarantee consistency. This is not
the case for schema consistency but may result from constraints and other
logical consistency requirements or event handlers.

- 23 -

3 References

[UDT] Karge R.: Unified Database Theory, RUN Software, Orlando (Flor­
ida), 2003,
www.run-software.com/content/downloads/documentation/P1_UnifiedDatabaseTheory.pdf

[TM2] Karge, R.: Terminology Model II, Berlin, 2011
www.run-software.com/content/downloads/documentation/P2_TerminologyModel_v2.pdf

[ORM] RUN Software: Multiple database storage support, Berlin, 2007
www.run-software.com/content/downloads/documentation/1.8_ORMappingConcept.pdf

[ODM] ODMG; The Object Data Standard ODMG 3.0, Academic Press,
2000

[ADL] RUN Software: Active Data Link (ADL), Berlin, 2007
www.run-software.com/content/downloads/documentation/1.7_ActiveDataLink. pdf

http://www.run-software.com/content/downloads/documentation/P1_UnifiedDatabaseTheory.pdf
http://www.run-software.com/content/downloads/documentation/1.7_ActiveDataLink.pdf
http://www.run-software.com/content/downloads/documentation/1.8_ORMappingConcept.pdf
http://www.run-software.com/content/downloads/documentation/P2_TerminologyModel_v2.pdf

	1 Introduction
	2 Database categories - ODABA and the world of databases
	2.1 Database schema
	2.1.1 P0 database schema
	2.1.2 P1 database schema
	2.1.3 P2 database schema
	2.1.4 P3 database schema

	2.2 Database consistency and intelligence
	2.3 Database queries
	2.4 Implementation view
	2.5 Event handling
	2.6 Transactions

	3 References

